
A Constraint Extension to Scalable Vector Graphics

Greg J. Badros Will Portnoy Jeff Nichols Alan Borning
{badros,will,jwnichls,borning}@cs.washington.edu

Dept. of Computer Science and Engineering
University of Washington, Box 352350

Seattle, WA 98195-2350, USA

ABSTRACT

Scalable Vector Graphics (SVG) is a language developed
by the World Wide Web Consortium for describing two
dimensional vector graphics for storage and distribution
on the Web. Unlike raster image formats, SVG-based
images scale nicely to arbitrary resolutions and sizes.
We introduce a constraint extension to SVG called Con-
straint Scalable Vector Graphics (CSVG) that permits
a description of an image that is more flexible. With
CSVG, an image can contain objects whose positions
and other properties are linearly related to other at-
tributes via constraints. For example, a rectangle can
be specified to remain above a circle, and a line can
be constrained to connect their centers. The various
constraints each have a specified strength, and we use
constraint hierarchy theory to determine an appropriate
solution. CSVG enables better layouts of diagrams for a
wider variety of viewing conditions and provides support
for declaratively specified animation. We embedded our
Cassowary constraint solving toolkit in an existing SVG
renderer to produce a prototype implementation of a
CSVG system.

KEYWORDS: constraints, Cassowary toolkit, CSVG,
SVG, Scalable Vector Graphics, illustration.

INTRODUCTION

Scalable Vector Graphics (SVG) [17] is a language de-
veloped by the World Wide Web Consortium (W3C) for
describing two dimensional vector graphics. SVG is used
for storage and distribution of images on the web, and
is increasingly well-supported by both commercial and
free software. In contrast with raster image formats such
as GIF, JPEG, and PNG, which store a matrix of indi-
vidual pixels that compose an image, a Scalable Vector
Graphic image contains instructions for resolution inde-
pendent rendering: the same SVG file will be shown in
more detail when viewed at a higher resolution (e.g., on
a 1200 dots per inch typesetting device rather than a 75

Figure 1: SVG image of a lion cub.

dpi screen). A sample SVG image appears in Figure 1.

SVG graphics provide numerous immediate benefits
besides resolution independence. SVG files are often
smaller than an analogous raster image, thus web pages
using them may take less time to download. Because
SVG is based on XML [13], SVG files are easy to
exchange, process, and analyze. SVG integrates well
with Cascading Style Sheets (CSS) [12] specifications,
thus enabling some separation of the content of the
graphic from the visual appearance of that image.
For example, the colors of a graphic can be specified
in a style sheet that is independent of the SVG file
itself. SVG also preserves image structure at a higher
level—for example, a web browser can directly read
the text included in an SVG figure. This ability, along
with the separation of style from content, dramatically
improves the accessibility of images for users with color-
blindness or other visual impairments. Additionally,
the Document Object Model (DOM) [2] and the SVG
DOM [17, Appendix B] can be used to manipulate the
shapes in an image dynamically to create animations
and other effects.

SVG is Not Enough
Although the SVG format is a huge step forward for
many kinds of images, we can do even better for di-
agrammatic illustrations. Contrast the illustration in
Figure 2 with the lion cub in Figure 1. Figure 2 is a
simpler image in which we provide a visualization of a
class hierarchy. With SVG we have to specify the en-
tire diagram fully and exactly by giving positions and
sizes for all of the elements: precisely one class hierarchy
diagram is described.



Figure 2: SVG image diagramming the object hier-
archy surrounding the Java.Text.Format class. The
SVG source for this image appears in Figure 3.

Full specification is important for a complex realistic
image such as Figure 1, but is less important for many
information visualization applications. Instead, in Fig-
ure 2, there are certain properties of the layout that are
important in conveying the desired information. For
example, we want the parent class “Object” to appear
above its subclasses, and want lines to connect classes to
denote the inheritance relationship. If we were able to
describe what is actually semantically important about
a figure, we could have a single description that pre-
serves flexibility for the renderer and would generate
Figure 2 or other variations of that illustration.

Constraints are a useful approach for allowing users
to state their intentions more directly. A constraint
is a declarative specification of a relationship that we
wish to hold true. For example, “Format appears above
DateFormat” is a constraint. We can write the constraint
mathematically as:

Format.ybottom + vert spacing ≤ DateFormat.ytop

By stating declaratively how the two object attributes
are to relate, we avoid having to give explicit values
to either. Instead, we can defer that task to a con-
straint satisfaction algorithm that will assign values to
variables. In this example, we can then use those value
assignments to determine where to position the names
of the various classes in the hierarchy.

Our Contributions

We describe a constraint extension to Scalable Vector
Graphics, called Constraint Scalable Vector Graphics
(CSVG). Our extension allows CSVG images to use ar-
bitrary linear arithmetic constraints to control the lay-
out of shapes, lines, paths, and font sizes. With con-
straints, diagrams can be under-specified, thus permit-
ting the rendering engine greater flexibility when laying
out the illustration.

Our main contributions are:
• a motivation for using constraints for certain kinds of

SVG illustrations;

• a description of Constraint Scalable Vector Graphics
as an extension of SVG, including a Document Type
Definition (DTD) for CSVG; and

• a prototype implementation of a CSVG viewer based
on the CSIRO SVG viewer [35]. The prototype makes
use of the sophisticated constraint solving algorithm
Cassowary [11].

BACKGROUND
The Scalable Vector Graphics (SVG) language [17] is
based on the eXtensible Markup Language (XML) [13].
SVG also makes use of the Cascading Style Sheets
(CSS) [12] standard for partially separating visual pre-
sentation information from the basic image description
itself. In this section, we provide a brief overview of
each of these standards, and then discuss the Cassowary
Constraint Solving Toolkit, which provides the engine
behind our constraint-based extensions.

XML: eXtensible Markup Language
XML is a standardized eXtensible Markup Lan-
guage [13] that is a subset of SGML, the Standard
Generalized Markup Language [27]. The World
Wide Web Consortium (W3C) designed XML to be
lightweight and simple, while retaining compatibility
with SGML. Although HTML (HyperText Markup
Language) is currently the standard web document
language, the W3C is positioning XHTML, an XML-
based language, to be its replacement. While HTML
permits authors to use only a pre-determined fixed set
of tags in marking up their document, XML allows
easy specification of user-defined markup tags adapted
to the document and data at hand [18, 19]. XML can
thus be used as the basis for many languages describing
arbitrary data, not just the single XHTML language.

An XML document consists simply of text marked up
with tags enclosed in angle braces. A simple example
appears in Figure 3.

The <svg> is an open tag for the svg element. The </svg>

at the end of the example is the corresponding close tag.
Text and other nested tags can appear between the open
and close constructs. In the example, the svg contains
16 immediate children elements. Empty elements are
allowed and can be abbreviated with a specialized form
that combines the open and close tags: <tag-name />

(e.g., each of the line elements). Additionally, an XML
open tag can associate attribute–value pairs with an ele-
ment. For example, the first text element has the value
200 for its x attribute. Attributes of an element are un-
ordered and multiple values for the same attribute name
are disallowed. In contrast, child elements are ordered,
and multiple child elements of the same type may be
permitted (e.g., there are eight text children of the svg

element).

For an XML document to be well-formed, the document
must conform to the syntactic rules required of XML
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<?xml version="1.0"?>

<!DOCTYPE svg SYSTEM "svg.dtd">

<svg width="4.5in" height="4in"

viewBox="0 0 100 100"

style="fill: none; font-size: 15;

stroke-width: 1; stroke: black;

text-anchor: middle">

<desc>The object hierarchy surrounding

the class "Java.text.Format"</desc>

<text x="200" y="30">Object</text>

<text x="200" y="90">Format</text>

<text x="60" y="150">DateFormat</text>

<text x="60" y="210">SimpleDateFormat</text>

<text x="200" y="150">MessageFormat</text>

<text x="380" y="150">NumberFormat</text>

<text x="310" y="210">DecimalFormat</text>

<text x="450" y="210">ChoiceFormat</text>

<line x1="200" y1="32" x2="201" y2="75"/>

<line x1="200" y1="92" x2="60" y2="135"/>

<line x1="200" y1="92" x2="201" y2="135"/>

<line x1="200" y1="92" x2="380" y2="135"/>

<line x1="60" y1="152" x2="61" y2="195"/>

<line x1="380" y1="152" x2="310" y2="195"/>

<line x1="380" y1="152" x2="450" y2="195"/>

</svg>

Figure 3: SVG source of the class hierarchy illustration
shown in Figure 2. SVG is based on XML.

documents (e.g., tags must be balanced and properly
nested, and attribute values must be of the proper form
and enclosed in quotes).

A more stringent characterization of an XML document
is validity. An XML document is valid if and only if it
both is well-formed and adheres to its specified docu-
ment type definition, or DTD. A document type defini-
tion is a formal description of the grammar of the spe-
cific language to be used by a class of XML documents.
It defines all the permitted element names and describes
the attributes that each kind of element may possess.
It also restricts the structure of the nesting within a
valid XML document. Figure 3 is valid with respect
to the DTD that describes Scalable Vector Graphics,
svg.dtd [17, Appendix A].

SVG: Scalable Vector Graphics

SVG is an XML-based language for describing vector
graphics. It was designed by the W3C and is intended
to be the standard format for all images on the Internet.
Vector graphics provide resolution independence—the
description of the image is based on higher-level graph-
ical elements, rather than the pixels used to describe
a raster image. SVG uses XML elements to represent
basic shapes, including rectangles, ellipses, lines, and
polygons. It also supports the more general notion of
an arbitrary path that can represent an outline to be
filled, stroked, or clipped to. SVG is very similar in
spirit to the PostScript page-description language [1],

but uses XML syntax instead of postfix notation.

An SVG element describes a shape to be rendered. For
example:

<rect x="20" y="10" width="10" height="5"/>

describes a rectangle whose top-left is positioned at co-
ordinate (20,10) with a width of 10 units, and a height
of 5 units. Lengths and coordinates can specify units
explicitly, but when they are omitted, the user space
coordinate system is used [17, Ch.7]. Unfortunately, all
basic shape objects use their top-left as an anchor point,
making it unduly cumbersome to position, for example,
the center of an object at a specific location.

An especially powerful SVG element is path. Its d

(for “data”) attribute contains a string that encodes a
command-based description of an arbitrary outline. For
example, the element:

<path d="M 20 10 L 30 10 L 30 15 L 20 15 Z"/>

describes a rectangle path equivalent to the preceding
rect element: first Move to (20, 10), then draw Lines
to (30,10), (30,15), and (20,15), and finally close the
path (Z). Uppercase command characters designate the
use of absolute coordinates, while lowercase denotes rel-
ative coordinates. Other path sub-language commands
include Curve-to, Smooth curve-to, Quadratic Bezier
curve-to, and more.

Other important elements include defs and use for defin-
ing objects and later referencing them, image for em-
bedding legacy raster image files (e.g., PNG or JPEG
graphics), text for including text, and g for grouping
sub-elements to be rendered as a single entity.

A program that reads an SVG file has access to the
internals of the image via the SVG Document Object
Model [17, Appendix B]. The SVG DOM is compatible
with the basic XML DOM [2] and is a proper extension
of the DOM Core [23]. The DOM permits access to the
SVG element tree, including allowing the manipulation
of element attributes. For example, to increase the size
of a text element, we can write the following code in
ECMAScript [16] (a standardized version of JavaScript).

e = document.getElementById("TextElement");

e.setAttribute("transform", "scale(2)");

and the selected element will be scaled to twice its nor-
mal size. The SVG DOM can be used in combina-
tion with scripting and event handlers (e.g., mousedown,
onclick) to permit some useful interactive capabilities.

SVG also contains several animation elements that de-
scribe time-based perturbation of the containing object.
These elements can be used to achieve motion along
paths, the fading in or out of objects, changes in color,
and more. For example, to animate moving a rectangle
horizontally across the viewport to the right, we write:

<rect x="20" y="10" width="10" height="5"/>
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<animate attributeName="x"

attributeType="XML"

begin="0s" dur="9s" fill="freeze"

from="20" to="120"/>

</rect>

Most elements contain attributes to control especially
important properties of the described object, such as its
position and size. Numerous other properties of objects
are set using a single attribute called style. That at-
tribute is the access point to a powerful style description
language called Cascading Style Sheets.

CSS: Cascading Style Sheets
The Cascading Style Sheets (CSS) [12] recommenda-
tion was introduced by the W3C in association with the
HTML 4.0 standard. CSS provides a rich set of “style”
properties for various HTML and SVG tags. By setting
the value of these properties, the document author can
control how the browser will display each element.

SVG images can directly annotate elements in the doc-
ument with style properties via the style attribute. Al-
ternatively, the author can place this information in a
separate style sheet and then link or import that file.
Thus, the same document may be displayed using dif-
ferent style sheets and the same style sheet may be used
for multiple documents, easing maintenance of a uniform
look for a web site.1 For example, in Figure 3 the svg

element specifies a style attribute with the multi-part
string value:
fill: none; font-size: 15;

stroke: black; stroke-width: 1;

text-anchor: middle

Each of the above five CSS declarations is a property–
value pair. For example “font-size: 15” specifies that
the property “font-size” should take on the value “15”.
Because all of these style properties are specified on the
svg root element, the styles they set are inherited by
each child element, unless they are overridden. The
CSS standard specifies complex rules for determining
the final value for a property from the multiple declara-
tions that could influence it—this is called “cascading.”
An earlier paper discusses a constraint extension to CSS
that declaratively formalizes these rules using constraint
hierarchy theory and also demonstrates some extensions
that provide greater expressiveness [5].

Cassowary Constraint Solving Toolkit
Cassowary is our constraint solving toolkit that supports
arbitrary linear arithmetic constraints [4]. Constraints
can be either equalities or inequalities over real-valued
variables. Each constraint can be either required (hard)
or preferred (soft). Arbitrarily many levels of prefer-
ence can be handled, but we typically use only three:

1Unfortunately, few SVG renderers currently support separat-
ing the style sheet from the SVG document—with some imple-
mentations, only style properties set via the style attribute are
honored.

strong, medium, and weak. Applications specify sets of
constraints and strengths, and the constraint solver as-
signs values to the variables to satisfy the constraints.
All required constraints must be exactly satisfied, and
the various non-required constraints are satisfied as well
as possible. Cassowary handles cycles without difficulty.

Constraint hierarchy theory [9] provides a declarative
semantics of what constitutes a correct solution. For
Cassowary, we use the weighted-sum-better comparator
for choosing a single solution from among those that
satisfy all the required constraints. This comparator
computes the error for a solution by summing the prod-
uct of the strength and the error for each constraint
that is unsatisfied. Strengths are represented as tuples:
strong is (1, 0, 0), medium is (0, 1, 0), and weak is (0, 0, 1).
We order the errors lexicographically so that a strong
constraint is infinitely more important than all of the
medium and weak constraints.

Client applications use soft constraints to control what
solutions are chosen—they are a means of manipulating
the objective function for the optimization. An impor-
tant use of non-required constraints is to enforce stabil-
ity in graphical layout. We typically add a weak “stay”
constraint on each variable’s value which states that a
variable’s future value should be its current value. These
stay constraints make objects remain in place unless
some other stronger desire forces a change.

The Cassowary constraint solving algorithm is an incre-
mental version of the simplex algorithm that we have
optimized for interactive graphical applications. The
simplex algorithm is a well-known and heavily studied
technique for finding a solution to a collection of linear
equality and inequality constraints while minimizing the
value of a linear objective function [31, Section 2.5].

CSVG: CONSTRAINT SCALABLE VECTOR GRAPHICS
As previously mentioned, a primary advantage of Scal-
able Vector Graphics is resolution independence. The
conventional means of delivering an image is to render
the figure, then send the figure across the network in
a rasterized image format such as PNG or JPEG (Fig-
ure 4). The resolution is fixed when that file is cre-
ated, and the artifact the user receives is inflexible. The
adoption of the SVG image format permits a different
delivery mechanism (Figure 5). The high-level image
description is stored in the SVG image format, preserv-
ing much of the semantic value provided by the author.
That SVG file is then sent across the network, where an
SVG renderer on the client side chooses the resolution
and creates a rasterized display of that image specially-
tuned for the display device and the desired size.

The key observation concerning the evolution from
raster images to SVG is that we are sending a higher-
level description across the network and moving some
of the processing of the image from the server side
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Figure 4: The conventional process of delivering a raster
image across the network.
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Figure 5: The process of delivering a resolution-
independent SVG image across the network.

to the client side. Thus, the artifact sent across the
Internet is more flexible—it can be used as the source
for generating a high-quality printout of the image,
to create a low-resolution thumbnail of the image,
or even to “render” the image aurally using speech
synthesis to describe the diagram. The decision of how
to present the image is made with input from the user,
her browser, and other client-side software. Style sheets
provide yet another way to increase the flexibility of the
image sent over the network: not only is the resolution
left undetermined, but the final decision as to, for
example, the coloring scheme, can be delayed until after
applying style sheet declarations.

Extending SVG
Our constraint extension to SVG permits describing the
author’s layout intentions, and defers the actual posi-
tioning and sizing of the image’s elements until just be-
fore final display for the user (Figure 6). To support
this greater flexibility, we have made three extensions
to the SVG language. First, we add a new element type
called constraint and permit those elements to be chil-
dren of the svg root element. Each constraint element
has a required attribute, rule, and an optional attribute,
strength. Second, we support identifier names in place
of literal numbers in all attribute and style sheet values.

Thus, we can write:

<constraint rule="rect_w >= rect_h"

strength="strong"/>

<rect x="10" y="20"

width="rect_w" height="rect_h"/>

to express the desire that the rectangle be at least as
wide as it is tall. The rule implicitly introduces new
constraint variables.2 Third, we add several built-in

2Our syntax was chosen for simplicity. It may be useful to
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Figure 6: The process of delivering a CSVG image
across the network.

read-only constraint variables. (A read-only variable
is one that cannot be changed by the solver to satisfy
the constraint in which it occurs [9].) Two variables,
viewport width and viewport height, are used to allow
the image to be influenced by the size of the display
area. We expose current time and current time squared

which are both ever-increasing read-only variables that
allow CSVG to support the declarative specification of
time-based animations more directly than the animate

elements.

CSVG permits image descriptions to be at a higher level
of abstraction than an ordinary SVG file. Instead of

require explicit introduction of variables and to use a separate
XML namespace for our extensions so that SVG renderers without
a constraint engine could still handle CSVG images.
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Figure 7: CSVG rendering of the Format class hierarchy inside a wide and short viewport.

forcing the author to specify exact values for positions
and sizes, the CSVG author can use meaningful names
for values and enumerate desired relationships among
those values. Similar to how SVG defers choosing the
display resolution to later in the delivery pipeline, CSVG
delays finalizing the layout of the illustration until the
client side (Table 1).

Table 1: Where properties of a graphic becomes fixed.

Image format Resolution Style Layout
PNG/JPEG server server server
SVG client server server
SVG + CSS client client server
CSVG + CSS client client client

A Layout Example
We can rewrite Figure 3 to specify constraints on the lay-
out of the class hierarchy, rather than giving exact loca-
tions for all the parts of the illustration. Our CSVG de-
scription of the image looks like the ordinary SVG image
(Figure 2) under “ideal” viewing conditions. However,
the CSVG file is far more flexible, and it will appear as
shown in Figures 7 and 8 when the viewport dimensions
are altered. An ordinary SVG file would always appear
as just a uniformly scaled version of Figure 2.

For our CSVG version of the class hierarchy, we use a to-
tal of 77 constraints that reflect typical layout desires for
viewing trees: nodes at the same level are aligned hori-
zontally (4), different levels are spaced at equal vertical
intervals (8), there is a minimum gap between adjacent
nodes on the same level (4), and parent nodes are above
and midway between their edge children (5) [31, p. 204].
Of the remaining 56 constraints, 32 are used to keep the
text inside the viewport, 16 are used to declare connec-
tion points for the lines, and the last 8 are for setting
the margin parameters and controlling the font size. An
abridged version of the CSVG source is in Figure 10.

Of course, many of these constraints are redundant and

Figure 8: CSVG rendering of the Format class hierar-
chy inside a narrow and tall viewport.

could be eliminated through analysis. Because the Cas-
sowary algorithm handles cycles without difficulty, the
redundancies are not a problem, though they do impact
performance. A CSVG image for frequent use would
likely be optimized before distribution.

An Animation Example

Constraints relating object positions to the current time
can be used to support simple animations. Constraints
for layout are even more compelling when parts of the
image are moving: the positions of the remaining objects
can be described at a high level, knowing that the solver
will animate whatever other objects need to move to
maintain the specified constraints.

Figure 9 shows four screenshots of our CSVG prototype
rendering an animation of a ball falling on a seesaw.
The seesaw.csvg image contains 18 constraints to sup-
port the animation: 12 for the positions of the various
elements, 1 relating the ball to the current time squared

built-in variable, 1 stating that the ball must remain
above the left edge of the seesaw, and 4 describing that
the seesaw cannot go through the floor nor through the
fulcrum.

IMPLEMENTATION

On the client side of the pipeline, we have implemented
a CSVG viewer to experiment with the additional ex-
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Figure 9: CSVG animation of a ball falling towards seesaw. The position of the ball is directly related to time, and the
seesaw moves because of constraints describing its behavior.

pressiveness it provides. Our prototype is based on ver-
sion 0.71 of the CSIRO SVG Viewer [35]. That SVG
viewer is implemented in Java, and it uses IBM’s XML4J
parser version 2.0.15 [26]. For parsing the constraint
rule expressions, we use JLex [8], a lexical analyzer gen-
erator (similar to Lex), and CUP (Constructor of Use-
ful Parsers) [25], an LALR parser generator (similar to
YACC). For solving the constraint systems and laying
out the figure, we embedded our Java implementation
of the Cassowary Constraint Solving Toolkit [4].

As with any XML language, CSVG is defined by its
Document Type Definition. Our CSVG DTD is a
straightforward extension of the SVG DTD: we added
the constraint element and specified its two attributes,
rule (required) and strength (implicit, defaulting to
strong):

<!ELEMENT constraint EMPTY >

<!ATTLIST constraint

rule CDATA #REQUIRED

strength CDATA #IMPLIED>

Additionally, we added the constraint element to the
list of permissible children of svg elements:

<!ELEMENT svg (defs?,desc?,title?,

(path|text|...|constraint)*)>

No other changes to the SVG DTD were necessary to
support using identifiers inside of attribute expressions.
(However, further changes would be necessary with the
more sophisticated data description that XML Schema
allows.)

After the XML parser reads in the SVG document, we
handle constraint elements by creating a new constrain-
able variable for each unique identifier contained in a
constraint rule. For each variable, we add a stay con-
straint on it to ensure stability of the resulting figure.
Then, for each constraint element, we create a constraint
object by parsing the rule attribute’s string. Finally, we
add each constraint to the global solver.

As we build the internal representation of the image,
we store the names of variable identifiers that are used

as an attribute’s value. Then, whenever we render the
figure, we retrieve the values of attributes as usual, with
one extra step: if the attribute is an identifier, we then
look up that constraint variable’s value and use it. For
path elements, we prefix names of constraint variables
with the $ symbol to avoid ambiguity. For example, we
write:
<path d="M $x $y l $dx $dy"/>

to move to the absolute coordinates held in x and y, and
then draw a line to the relative coordinates contained in
variables dx and dy.

On our Xeon Pentium III 550 MHz test machine running
Java 1.3beta-0 with the HotSpot virtual machine under
Windows NT 4.0, the performance of our prototype is
very good. For our class hierarchy example that contains
77 constraints, the adding of the constraints and the ini-
tial solve requires only 360 ms. Subsequent re-solves of
the constraint system after resizing the window require
less than 200 ms each. Thus, re-rendering the figure af-
ter changing the viewport size takes only slightly longer
than for the ordinary SVG viewer. Performance would
be even better if we removed redundant constraints or
if we further optimized our implementation.

On the server side, our class hierarchy diagram example
was largely mechanically-derived from an XML-based
representation of Java source code, JavaML [3]. Using
XSLT [14], it is reasonably straightforward to generate
CSVG from the JavaML representation.

RELATED WORK
As mentioned earlier, style-sheet technologies, such as
CSS (Cascading Style Sheets) [12], PSL (Proteus Style
Language) [30], DSSSL (Document Style Semantics and
Specification Language) [28], and XSL (eXtensible Style
Language) [14], each delay finalizing various presenta-
tional attributes of a figure until later in the delivery
process, closer to the viewing user. None of these style
languages, however, attempt to preserve layout desires
to perform layout dynamically on the client side.

Our constraint extensions to Cascading Style Sheets,
CCSS, demonstrate how CSS can be understood in
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<?xml version="1.0"?>

<!DOCTYPE svg SYSTEM "csvg.dtd">

<svg width="4.5in" height="4in"

viewBox="0 0 100 100"

style="fill: none; stroke: black;

stroke-width: 1">

<desc>The object hierarchy surrounding class

"Java.text.Format"</desc>

<constraint rule="fh >= 9"/>

<constraint

rule="vert_spacing = vp_height / 3.5"/>

<constraint rule="text_w * 4 = vp_width"/>

...

<!-- stay inside viewport -->

<constraint

rule="o_x >= side_margin + h_text_w"/>

<constraint

rule="o_x &lt;=

vp_width - side_margin - h_text_w"/>

<constraint

rule="o_y >= top_margin + fh"/>

<constraint

rule="o_y &lt;= vp_height - top_margin"/>

...

<!-- layout between children and parents -->

<constraint

rule="(dtf_x + nf_x) / 2 = f_x"

strength="strong"/>

<constraint

rule="f_y >= o_y + vert_spacing"

strength="strong"/>

...

<!-- same level at same y coordinate -->

<constraint rule="dtf_y = mf_y"/>

...

<!-- same level spread out horizontally -->

<constraint rule="dtf_x + text_w &lt;= mf_x"/>

...

<!-- the text elements for each class -->

<g style="font-size: fh; text-anchor: middle">

<text x="o_x" y="o_y">Object</text>

<text x="f_x" y="f_y">Format</text>

<text x="dtf_x" y="dtf_y">DateFormat</text>

<text x="mf_x" y="mf_y">MessageFormat</text>

<text x="nf_x" y="nf_y">NumberFormat</text>

...

</g>

<!-- lines connecting parents to children -->

<line x1="o_x" y1="o_y_b"

x2="f_x" y2="f_y_t"/>

<line x1="f_x" y1="f_y_b"

x2="dtf_x" y2="dtf_y_t"/>

...

</svg>

Figure 10: CSVG source of the object hierarchy sur-
rounding the Java.text.Format class. The &lt; in-
side of rule attribute values is an XML entity that rep-
resents the “<” symbol.

terms of constraints, and they add expressiveness given
that more general framework [5]. Our CSVG motiva-
tion and philosophy is analogous to that of CCSS, and
CCSS is directly applicable to controlling style proper-
ties of CSVG documents as well. The primary addition
of CSVG beyond CCSS is the ability to control non-style
properties of SVG elements. This feature is necessary
to control layout because the positions of those objects
are determined not by style properties but by element
attributes. An earlier paper [10] had goals similar to
CCSS, but did not integrate well with the emerging web
standards.

Kim Marriott (a co-author on our Cassowary and CCSS
work) and his colleagues have independently done some
preliminary work on constraint extensions to SVG.
They use MathML to describe constraints (instead of
a string), use the QOCA algorithm which uses a least-
squares-better comparator but is otherwise similar to
Cassowary, and support a limited form of disjunctions
modeled after our preconditions for CCSS [39]. Diehl
and Keller describe constraint extensions to the Virtual
Reality Markup Language (VRML) basd on a local
propagation based solver that is unable to handle cycles
or inequality constraints [15].

The animation aspects of SVG and CSVG are related
to the Synchronized Multimedia Integration Langauge
(SMIL) [24]. Another project called Madeus has used
the Cassowary solver to handle a wider range of con-
straints in multimedia documents [38]. Madeus provides
support for both temporal and spatial relationships, and
it includes a rudimentary authoring environment.

There is a long history of using constraints in interfaces
and interactive systems, beginning with Ivan Suther-
land’s pioneering Sketchpad system [37]. Juno-2 is a
more recent constraint-based drawing application [22].
Constraints have also been used in several other lay-
out applications. IDEAL [40] is an early system specif-
ically designed for page layout applications. Harada,
Witkin, and Baraff [20] describe the use of physically-
based modeling for a variety of interactive modeling
tasks, including page layout. glide [36] uses visual or-
ganization features (VOFs) to control layout of arbi-
trary graphs using a spring metaphor and an iterative
numeric solver. Numerous systems use constraints for
widget layout [32, 33], and Badros [7] uses constraints
for window layout.

CONCLUSIONS AND FUTURE WORK

Our constraint extension to SVG provides useful new
expressiveness for describing illustration graphics at a
higher semantic level. CSVG permits deferring the ac-
tual layout of the objects in the figure until the final
rendering, thus resulting in greater flexibility in dealing
with varied viewing environments and user desires. The
implementation of our prototype system was straight-
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forward because we were able to leverage our Cassowary
constraint solving toolkit.

There are substantial opportunities for future improve-
ments of CSVG. Currently, there are no authoring en-
vironments that preserve the author’s intentions suffi-
ciently well to generate CSVG at the appropriate level
of abstraction. It is essential that a drawing program
permit users to specify constraints interactively, dy-
namically maintain them throughout editing, and ul-
timately reflect those constraints in the saved CSVG
file. Noth’s CDA [34] or an SVG-capable editor such as
Adobe Illustratortm or Sketch [21] may provide a useful
starting point.

Even in the presence of graphical editing tools for
CSVG, it may be beneficial to provide some syn-
tactic sugar for CSVG. Future versions of CSVG
could support referencing other elements’ attributes
directly. Additionally, CSVG could easily support
using arbitrary expressions, instead of just identifiers,
for attribute values. Such expressions would provide
non-linear and non-numeric constraints over read-only
variables. Extending the power of the constraint
solving algorithms would permit some of these kinds of
constraints over read-write variables. For example, a
text element in a CSVG document could be constrained
to display the coordinates of a circle: moving the circle
would update the string, and editing the string would
move the circle.

It may also be useful to permit even higher-level con-
straint abstractions in the CSVG source. For example:

<align dir="horizontal" anchor="middle">

<!-- arbitrary basic shape objects here -->

</align>

would permit easier specification of the intention that a
set of basic shapes are aligned in a row by their vertical
centers. Constraints at this level also avoid problems
that arise when object structure changes. Suppose a
basic shape is removed from a diagram (e.g., using the
SVG DOM): should indirect relationships through that
object remain or be removed? If only the primitive con-
straints are present, the situation is ambiguous. With
multiple objects being aligned with a single declaration,
the answer is more clearly that those objects should re-
main aligned.

Another area for future work is to better describe the
semantics of the SVG in terms of constraints and con-
straint hierarchy theory. This direction is similar to
what we did for Constraint Cascading Style Sheets [5]
and it may provide a unifying implementation mecha-
nism for parts of SVG as well. In particular, some of the
scripting events, such as onMouseMove, may be handled
within this framework: a discrete action (such as a but-
ton press) establishes a connection that then is managed
via a constraint relationship until a subsequent action

removes the constraint [29].

Overall, CSVG provides a surprising amount of expres-
siveness at a minimal implementation complexity, and
at a low performance cost.
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Availability
Our prototype CSVG renderer, complete versions of
both examples described here, and the Cassowary con-
straint solving toolkit are all freely available on the In-
ternet [4, 6] and are distributed under the terms of the
GNU General Public License.
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