
Dissertation Proposal

Constraints for Interactive Layout

Greg Badros
Department of Computer Science and Engineering

University of Washington

16 October 1998

1 Background and Introduction

From the inception of graphical user interfaces, systems have tried to use constraints to
maintain relationships among on-screen entities [Sut63]. Constraints permit the designers
or users of a system to express what they wish to hold true, rather than detail how to
maintain the invariant procedurally. This declarative specification of desired relationships is
the fundamental strength of using constraints. Constraints are especially natural in managing
user interfaces [BD86, MMM+97, MGD+90], drawing [Sut63, HN94], and other applications
involving geometrical layout [CSI86, HM96, RMS97].

Since any constraint system is limited by the expressibility and performance of the under-
lying constraint solver, increasing the power of solvers is a popular research area. Early sys-
tems embedded solvers based on iterative numerical techniques and local propagation which
dealt only with acyclic constraints [Sut63, Bor79]. More sophisticated constraint systems
(e.g., those with cycles, inequalities, or simultaneous linear equalities) require correspond-
ingly more advanced techniques for finding solutions. Though batch numerical techniques are
applicable for solving constraint systems in isolation, the demand for interactive use of con-
straints required algorithmic improvements to increase solver efficiency by exploiting previous
solutions [FBM89, BFB98, BMSX97].

There is substantial tension between the expressiveness of the constraints a solver can
manage and the efficiency in finding a solution. (For example, permitting arbitrary non-
linear constraints prohibitively increases the computational complexity of the solver algo-
rithm [VHM95].) Because of this fragile balance between expressiveness and performance,
system implementors typically hand-tune the tradeoff for each specific application involving
constraints—reuse of constraint solvers in interactive applications has been relatively limited.
The implementation challenge has certainly hindered widespread acceptance of constraint
solving technology.

After over thirty years of research, general-purpose constraint technology remains largely
unsuccessful commercially in interactive applications. Numerous difficulties have contributed

1



Dissertation Proposal Greg Badros

to this lack of success. User interfaces for specifying and managing constraints are often
immature or incomplete, failing to hide the complexities and idiosyncrasies of the underlying
solver from the user. To be most useful, constraints must be expressed at an appropriate
level of abstraction for the application and user’s sophistication. The benefit of the con-
straint abstraction may disappear if the solving engine must be understood in detail to use a
system effectively. Debugging constraints at a reasonable level of abstraction is particularly
challenging—with existing systems, unexpected solutions can often be difficult to explain,
and few tools, if any, are provided to aid the user’s understanding.

As hinted earlier, another problem relates to domain-specific needs of individual constraint-
based applications. When an application needs to express a constraint that exceeds the em-
bedded solver’s abilities, the temptation is to find an ad-hoc means of providing just that
additional capability. This complicates the solver with edge cases instead of extending the
solving infrastructure more generally.

I intend to attack these problems with current constraint technology within the context of
interactive layout applications. The next section discusses my plans for using constraints in
two such applications: 1) a web browser and authoring environment for creating and rendering
a document containing text, figures, tables, and other entities; and 2) a window manager
for arranging and manipulating application windows on a user’s desktop. Both of these
applications will build on existing solver technology, and in Section 3 I discuss my plan for
creating a generalized and extensible constraint solver infrastructure to permit easier addition
of the domain-specific relationships. Section 4 briefly summarizes my expected contributions
and Appendix A details a time schedule.

2 Interactive Layout

Interactive layout is rich with beneficial possible applications of constraints. For both web
browsers and window managers, constraints in some form are already in use; my thesis will
push the envelope of what is expressed within the solver while investigating what interface
metaphors and paradigms best aid the user. Since linear equalities and inequalities are es-
pecially useful for object-layout applications, the Cassowary [BB98] constraint solver will be
used as a starting point for each application.

2.1 Constraints and Style Sheets for the Web

The World Wide Web has exploded in popularity in the last seven years. However, publishing
for the web still suffers from some significant problems which stem from the lack of separation
of semantic information and visual formatting. Sites often maintain multiple versions of the
same document for various different browsers, screen size, or bandwidth limitations. The
duplication of content complicates a web site’s structure [FFK+98]. Additionally, not all
users’ needs will be met by the limited set of chosen presentation formats—differently-abled
users may be ignored. Page designers regularly mangle the semantic content of a document
to achieve a desired visual layout. The splicing of text fragments into tables or images

2



Dissertation Proposal Greg Badros

complicates tools’ use of the contained information (e.g., search engines and other agents).
Numerous attempts are underway to separate the desired visual structure of documents

into reusable style sheets. Cascading style sheets, as specified by the W3 Consortium, are a
popular approach to alleviating this problem [LB96, BLLJ98]. I will extend CSS1 (and later
CSS2) to permit expressing general constraints about the layout and other properties of the
page. In collaboration with H̊akon Wium Lie and Bert Bos of the W3 Consortium, some work
has been done to enhance CSS2 with constraints for box layout [Mic98]. I will build on that
specification and also on the work done by Alan Borning and others during his sabbatical at
Monash University in Melbourne, Australia (where I will be visiting next quarter) [BLM97].
To permit authors to easily use the constraint-enhanced CSS model, I will extend a web-page
authoring environment with a user interface for managing and debugging the constraints.

Document designers will be able to selectively specify only the relative importance of the
various aspects of the visual appearance of a page. Since the browser recognizes explicitly-
stated desired relationships for a given page it will have the freedom to generate layouts
that may be more useful to a wider range of users. Visually-challenged users will be able to
specify lower bounds on font sizes to keep text readable. The possibilities are endless–web
page authors could even link the page background color to the age of the document, so the
document yellows as it ages.

To permit interactive viewing and reformatting of the delivered pages with their visual
formatting specifications, I will embed the same solver in Amaya, the W3 Consortium’s test-
bed WWW browser [Con98]. Additionally, I will permit the end-user to specify desired layout
preferences using the same expressiveness of constraints. Though the competing constraints
could result in an over-constrained system, the theory of constraint hierarchies [BMMW89]
provides an elegant solution whereby the solver can be seen as an arbiter of the conflicting
preferences between the viewer and the author of page.

By providing a general constraints-based solution instead of a specific set of pre-defined
possibilities, the resulting system will be far more flexible and powerful than if CSS were
repeatedly extended with more and more ad-hoc capabilities. Ideally, our collaborations with
the W3 Consortium will result in adding constraints to the CSS specification so the “C” may
come to stand for “Constraints.”

2.2 Scheme Constraints Window Manager

In some windowing systems, the arrangement of windows on screen is managed by a distin-
guished user-level application called a window manager. Numerous window managers exist,
each enforcing different window layout policies. Various relationships among application win-
dows are easily expressed using linear equality and inequality constraints. For example, “this
window should be above that window,” or “these two windows’ heights should sum to the
display height.”

Window managers provide an application with especially dynamic (and thus challenging)
interactive layout needs: users constantly add, remove, rearrange and otherwise manipulate
windows to help them work better. Convenient window layout improves users’ overall perfor-
mance, as long as the placement of windows is not time consuming [KS96]. Window layout

3



Dissertation Proposal Greg Badros

and the other visual properties managed by a window manager are becoming more and more
related to web page layout: dynamic applets and addition, removal, and resizing of web-page
objects will become commonplace as web browsers and our desktop environment continue to
merge. Window managers may become the web browser of the future, or web browsers may
turn into desktop managers as the boundaries between the two applications fade away.

I have embedded the Cassowary constraint solver in an original window manager called
Scwm—the Scheme Constraints Window Manager [BS]. Users have the full generality of the
constraint solver for specifying the relationships among windows and a rich programmable
scheme environment for additional arbitrary computation. I will use Scwm as a test-platform
for studying user interfaces for manipulation and visualization of constraints. Additionally,
I will investigate ways to enable users to debug constraint systems interactively, without
exposing the computational details of the underlying solver.

Numerous features of existing window managers can also be expressed as constraints.
For example “sticky” windows which are visible on all viewports of a virtual display, and
“always-on-top” windows which remain unoccluded by (in front of) other regular windows.
These constraints will be satisfied via the local-propagation subsolver. The resulting con-
straint system will be expressive enough to permit very flexible, automatic window layout,
and subsume numerous ad-hoc constraint-like features already provided. Throughout devel-
opment, I will perform user studies to better understand how users layout their windows and
to learn how they employ the constraint system and its user interface to aid them.

3 Extensible Constraint Solving

To encourage wider use of constraint-solving technology, and improve the quality and reusabil-
ity of constraint solving toolkits, I will create an extensible constraint solving architecture
(or perhaps extend or enhance constraint handling rules [Fru98]). My approach will be to
first integrate the solving technologies of Cassowary—the efficient, incremental simplex-based
solver—with Ultraviolet [BFB98]—a local-propagation based arbitrary-domain solver. This
will extend Ultraviolet’s hybrid nature and permit other subsolvers.

Another important extension of the underlying solver is to add support for expressing dis-
junctions. I will extend the solver architecture with support for CLP-style [JL87] backtracking
to permit satisfying systems with disjunctions.

Finally, the experience of providing two useful extensions to the solver architecture will
provide insight for the last important goal for the infrastructure: specification of a clean API
to permit other subsolvers to be integrated with minimal non-essential affect to the perfor-
mance and complexity of the resulting combined solver. The two practical layout applications
described in Section 2 will exercise my constraint solver architecture substantially with their
demanding needs for sophisticated and varied relationships.

4



Dissertation Proposal Greg Badros

4 Expected contributions

To summarize, the primary expected contributions of my thesis are:

• An extension to the cascading style sheets specification and an implementation of a
web browser and authoring environment for a new constraint style sheets standard
supporting generalized constraints that are dynamically maintained;

• interactive graphical user interfaces for manipulation, visualization, and debugging of
advanced constraint systems for web page rendering and window manager layout;

• user study results reporting on the impact of constraints in enhancing web browsing and
document authoring, and automatic layout and manipulation of application windows
by a window manager; and

• an extensible architecture for constraint solving systems with a fully-specified API for
user extension and standard subsolvers for the architecture which simultaneously solve
linear equalities, inequalities, arbitrary domain constraints, and disjunctions.

By framing the research problems in two real-world applications, I expect the contribu-
tions to be of immediate practical value. Web page authors will have the necessary tools to
separate the visual layout desires for their content from the semantic information. Web site
maintenance will be simplified, web surfers will have more freedom in overriding formatting
that hinders their capability to understand or navigate pages, and automated tools will rea-
son more reliably about the pages they manage. As the desktop continues to merge with the
global web-space, we will be prepared for the increasingly dynamic layout needs of integrated
“everything browsers.”

5



Dissertation Proposal Greg Badros

A Time Schedule

My proposed thesis work is already underway. I am currently supporting C++ and Java
implementations of the Cassowary constraint solving toolkit. Work is underway to embed the
solver in the Amaya web browser. The below table lists various activities and my anticipated
completion dates.

Anticipated
Milestone completion
Initial design of generalized constraint extensions for CSS1 December 1998
Basic constraint solver embedded in Amaya January 1999
Cassowary/Ultraviolet solver integration April 1999
User interface for web authoring environment, browser June 1999
Preliminary user studies on browser July 1999
Extensions to solver to support disjunctions August 1999
Embedding of advanced constraint solver in Amaya September 1999
Revised constraint extensions, use of CSS2 December 1999
Second generation web authoring environment February 2000
Final user studies with Amaya, authoring environment April 2000
Basic constraint solver embedded in Scwm Completed
Preliminary constraints interface February 1999
Preliminary user studies on window layout with constraints July 1999
Embedding of advanced constraint solver in Scwm October 1999
Revised constraints visualization and manipulation interface January 2000
Final user studies with Scwm March 2000
Initial complete draft of dissertation May 2000
Final dissertation submission and defense June 2000

References

[BB98] Greg Badros and Alan Borning. The cassowary linear arithmetic constraint solving al-
gorithm: Interface and implementation. Technical Report UW-CSE-98-06-04, University
of Washington, Seattle, Washington, June 1998.

[BD86] Alan Borning and Robert Duisberg. Constraint-based tools for building user interfaces.
ACM Transactions on Graphics, 5(4):345–374, October 1986.

[BFB98] Alan Borning and Bjorn Freeman-Benson. Ultraviolet: A constraint satisfaction algo-
rithm for interactive graphics. Constraints: An International Jounal, 3:1–26, 1998.

[BLLJ98] Bert Bos, H̊akon Wium Lie, Chris Lilley, and Ian Jacobs. Cascading style sheets, level 2.
W3C Working Draft, January 1998. http://www.w3.org/TR/WD-css2/.

[BLM97] Alan Borning, Richard Lin, and Kim Marriott. Constraints for the web. In Proceedings
of 1997 ACM Multimedia Conference, 1997.

6



Dissertation Proposal Greg Badros

[BMMW89] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Constraint hierarchies
and logic programming. In Proceedings of the Sixth International Conference on Logic
Programming, pages 149–164, Lisbon, June 1989.

[BMSX97] Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. Solving linear arithmetic
constraints for user interface applications. In Proceedings of the 1997 ACM Symposium
on User Interface Software and Technology, October 1997.

[Bor79] Alan Borning. ThingLab—A Constraint-Oriented Simulation Laboratory. PhD thesis,
Stanford, March 1979. A revised version is published as Xerox Palo Alto Research Center
Report SSL-79-3 (July 1979).

[BS] Greg Badros and Maciej Stachowiak. Scwm—the scheme constraints window manager.
Web page. http://huis-clos.mit.edu/scwm/.

[Con98] W3 Consortium. Amaya web browser software. Web page, October 1998. http://www.
w3.org/Amaya.

[CSI86] Ellis S. Cohen, Edward T. Smith, and Lee A. Iverson. Constraint-based tiled windows.
IEEE Computer Graphics and Applications, pages 35–45, May 1986.

[FBM89] Bjorn Freeman-Benson and John Maloney. The deltablue algorithm: An incremental
constraint hierarchy solver. In Proceedings of the Eighth Annual IEEE Phoenix Conference
on Computers and Communications, Scottsdale, Arizona, March 1989. IEEE.

[FFK+98] Mary Fernandez, Daniela Florescu, Jaewoo Kang, Alon Levy, and Dan Suciu. Catching
the boat with strudel: experience with a web-site management system. In Proceedings of
SIGMOD, 1998.

[Fru98] Thom Fruhwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37(1-3):95–138, October 1998. http://www.pst.informatik.uni-muenchen.
de/∼fruehwir/chr-intro.html.

[GW94] Michael Gleicher and Andrew Witkin. Drawing with constraints. Visual Computer,
11(1):39–51, 1994.

[HM96] Weiqing He and Kim Marriott. Constrainted graph layout. In S. North, editor, Proceed-
ings of 1996 Graph Drawing Conference, pages 217–232, Berkeley, CA, September 1996.
Springer Verlag.

[HN94] Allan Heydon and Greg Nelson. The Juno-2 constraint-based drawing editor. Technical
Report 131a, Digital Systems Research Center, Palo Alto, California, December 1994.

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of
the Fourteenth ACM Principles of Programming Languages Conference, Munich, January
1987.

[KS96] Eser Kandogan and Ben Shneiderman. Elastic windows: Improved spatial layout and
rapid multiple window operations. Web page, May 1996. http://www.cs.umd.edu/users/
kandogan/papers/avi96/paper4.html.

[LB96] H̊akon Wium Lie and Bert Bos. Cascading style sheets, level 1. W3C Recommendation,
December 1996. http://www.w3.org/pub/WWW/TR/PR-CSS1/.

7



Dissertation Proposal Greg Badros

[MGD+90] Brad A. Myers, Dario Giuse, Roger B. Dannenberg, Brad Vander Zanden, David Kosbie,
Philippe Marchal, Ed Pervin, Andrew Mickish, and John A. Kolojejchick. The Garnet
toolkit reference manuals: Support for highly-interactive graphical user interfaces in Lisp.
Technical Report CMU-CS-90-117, Computer Science Dept, Carnegie Mellon University,
March 1990.

[Mic98] Brian Michalowski. A constraint-based specification for box layout in css2. Technical
Report UW-CSE-98-06-03, University of Washington, June 1998.

[MMM+97] Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S. Ferrency, Andrew
Faulring, Bruce D. Kyle, Andrew Mickish, Alex Klimovitski, and Patrick Doane. The
Amulet environment: New models for effective user interface software development. IEEE
Transactions on Software Engineering, 23(6):347–365, June 1997.

[RMS97] Kathy Ryall, Joe Marks, and Stuart Shieber. An interactive constraint-based system
for drawing graphs. In Proceedings of 1997 UIST Conference, Banff, Alberta Canada,
October 1997.

[Sut63] Ivan Sutherland. Sketchpad: A Man-Machine Graphical Communication System. PhD
thesis, Department of Electrical Engineering, MIT, January 1963.

[TMM+98] Shin Takahashi, Satoshi Matsuoka, Ken Miyashita, Hiroshi Hosobe, and Tomihisa Ka-
mada. A constraint based approach for visualization and animation. Constraints: An
International Jounal, 3:61–86, 1998.

[VHM95] Pascal Van Hentenryck and Laurent Michel. Newton: Constraint programming over
nonlinear real constraints. Technical Report CS-95-25, Brown University, Providence,
Rhode Island, August 1995.

8


