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Abstract

This paper presents advanced data compression techniques for predicting stock markets
behavior under widely accepted market models in finance. Qur techniques are applicable to
technical analysis, portfolio theory, and nonlinear market models. We find that lossy and
lossless compression techniques are well suited for predicting stock prices as well as market
modes such as strong trends and major adjustments. We also present novel applications of
multispectral compression techniques to portfolio theory, correlation of similar stocks, effects
of interest rates, transaction costs and taxes.

1 Stock market models

In this paper we address the applicability of modern data compression techniques for predict-
ing future behavior of stock markets. Motivated by stock market theory, we find that most
compression techniques are well suited for successful prediction. We introduce different market
models and present compression techniques that work well under these models. A stock market
provides a framework for investors to allocate funds into stocks, and to try to make profits
by buying “under valued” stocks and selling “over valued” stocks. Stock markets are one of
the most complex and rewarding systems to model accurately. Since their incorporation in the
latter part of the last century, there have been a vast number of different techniques to predict
their future behavior. Based on the market models we present in this section, we introduce
several data compression based techniques for their prediction. We first present definitions of
classical views 4f the markets, namely, the technical and the quantitative in Sections 1.1 and 1.2,
respectively. In Section 1.3 we introduce a modern market model that admits non-efficiency. We
analyze the applicability of data compression techniques under these different models. Lastly,
in Section 1.4, we introduce the portfolio theory and implications thereof to data compression
algorithms. ‘ :

1.1 Technical analysis of stock markets

Stock market prices, as most other economic time series, have been modeled by examining how
new information impacts the prices, and how much these prices reflect the true value of the
underlying security. The most common ma,rket prediction techniques can be divided into two
main catego jes: technical’ and, quantltatlve The technical view of the markets is that the prices
are-driven by nvest()r senturre t.and that the underlymg sequence of prices can be ca,pture&
and* predlcted “well using’ “data ¢harting® ‘techniques [31, 30]. This method studies the action of

the’ marke} as & dynamzcal entzty, rather than- studymg the actual goods in which the ma,rket:'v
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operates. This is a science of recording the historical market data, such as prices of stocks
and the volume traded, and attempting to predict the future from the past performance of the
stock. This model implicitly admits a non-efficient market model, where the prices are not only
a function of the underlying security valuation, but are also governed by investor sentiment,
health of the economy and many other. This is a popular and highly contested market model.
Terms like “primary”, “secondary” and “minor” trends, “tides”, “ripples”, “head-and-shoulders
top” patterns, and “triangles” were coined in the technical community by repeated observations
of stock trends and their classification into more common patterns. Data compression techniques
are therefore a perfect paradigm for algorithmic charting techniques. In Section 2 we present
data compression techniques suitable for technical analysts.

1.2 The efficient markets hypothesis

No less controversial is the model of an efficient market. Market efficiency essentially states that
the markets are priced in such a way that all public information available is already included
in the price of a stock, and movements on the markets are only due to arrivals of new informa-
tion [13, 14, 30]. Large numbers of investors insure that the prices on the market are fair, and
always converge towards an equilibrium. The price history of the market does not affect the
future, and consequently, the prices follow a random walk. Efficiency in capital markets implies
that the time series of returns are identically and independently distributed (IID) random vari-
ables, and consequently, no investor can consistently beat that market. Hence, no predictive
technique will be able to consistently outperform the buy-and-hold strategy. To quantify the
above, we start by interpreting stock prices as a time series of data. Let P; be the price of a
particular stock at time ¢, where t can be measured in units of seconds, minutes, days, months
or years. Under the efficient market hypothesis, the time series of prices P; are a random walk,
and the returns, 5+ P , of the stock are normally distributed. Under the efficiency hypothes1s,
no predictive techmque is expected to consistently outperform the market. There is, however,
considerable quantitative evidence that points to markets being non-efficient. Section 1.3 de-
scribes this evidence and defines the “nonlinear market model” used in this paper. We present
data compression techniques suitable for this view of the markets in Section 2.4.

1.3 Nonlinear market models

A comprehensive study of stock daily returns [12] found that returns were negatively skewed,
there were more observations in the left side of the tail, the tails were fatter than a Gaussian
and the peak around the mean was higher. The distribution of returns was consistently behaved
in this manner, pointing to a non-LI.D. nature of returns. This condition was coined leptokur-
tosis. A novel and widely respected statistical technique, the Brock-Dechert-Sheinkman (BD.S)
statistic is one of many that rejetts the null hypothesis of the IID nature of returns [32, 22, 37].
In other words, the markets have been analytically found to be inefficient, something that has
empirically been obvious for some time(in view of the fact that considerable profit has been
made from trades, such as arbitrage, exploiting market inefficiency). This degree of inefficiency
is crucial to investors who compare dynamic “buy-sell” strategies (which are overwhelmed by
transaction costs) to “buy-and-hold” strategies (which depend on accurate forecasting of long
term trends), and off-set their risks by diversifying their investments. More on this in Sec-
tion 2.3. The financial academic community(as opposed to the market community, e.g. Wall
Street) has not, as of yet, completely accepted the failure of the EMH, but has largely agreed
that the present investment techniques are in real danger of becoming obsolete [30]. Vaga and
Paters [30, 35] postulate that the markets are multimodal, and that they continuously drift



between the following four modes: (1)Efficient Mode, where current prices reflect all “available
information” with history of prices and returns; (2) Transition Mode, where the level of coherent
investor behavior increases due to new information and/or other factors, hence resulting in the
impact of this information to extend for prolonged periods of time; (3) Chaotic Mode, where the
investor sentiment is very strong but variations in groupthink are increased as well, which for
example may arize before the release of company quarterly reports or shortly before election
results; (4) Coherent Mode, where investors act as more or less one unit, resulting in very strong
positive or negative market trends. So far this has been found to be a highly realistic view of the
actual operation of the markets [30]. We introduce this model of the stock market. In Section
3.2 we present data compression techniques that are suitable for prediction of nonlinear market
models under fixed time series memory. Section 3.4 addresses data compression techniques for
dynamic memory models as defined below. Mandelbrot {26, 27] postulated.-and Lo [25] and
Peters [30] have empirically shown that the distribution of returns on the stock market follows
a fractal distribution, known as stable Levy distribution. These distributions have fatter tails
and are peaked higher at the mean than the Gaussian, and their underlying time series can
experience trends, cycles as well as catastrophes. The characteristic function f(t) of a random
variable, t, for the Levy distribution is given by log(f(t)) = 6t —v|¢t|*(1+ ﬂz(ﬁT) tan(a%)). This
distribution has four characteristic parameters that are continuously changing: § is the location
parameter of the mean; v a parameter.to adjust for different granularity of data; 8 is a measure
of skewness to the left or the right, valued from —1 to 1; a is a measure of the leptokurtosis of the
distribution. For a = 2, the distribution generalizes to the normal distribution. For example, if
a=2,=0,y=1,6 = u, we have log(f(t)) = tut — (%)tz, the standard normal distribution
N(u,0?). The nonlinear market hypothesis [30] states that a can vary from 1 to 2. Noninteger
values of a result in fractional Brownian motions of prices, which An important implication
of this model is that a stock time series has a memory. Future prices are a function of new
information as well as the past performance of the stock. For example, investors might be fairly
reserved to invest in a company that is in financial crisis, even though the stock price is low.
Estimation of the memory window can be tuned by adjusting the parameters of the underlying
distribution. As the parameters of the Levy distribution are varying in time, in accordance
with Vaga’s multimodal model, the stocks have a continuously changing memory. The dynamic
memory model of the stock market presents an intriguing problem for data compression. For
example, the calculation of the memory for a particular stock is still an open question. But,
following the works of Mandelbrot [27] described by Peters [30] and interpreting stock market
time series as statistically self-similar fractals and using the tools of fractal geometry, one can get
a very good approximation of the extent of current memory and hence, can form an appropriate
window for our compression algorithm. We present this compression model in Section 3.4.

1.4 Modern portfolio theory

The efficient markets hypothesis was a fundamental driving force for development of the modern
portfolio theory. Modern portfolio theory provides the toold for a quantitative analysis of risky
assets such as stocks, based on the expected return, which under the EMH is the mean expected
value, and the risk, under EMH defined as the variance of a portfolio. A portfolio is a vector-
valued time series of stocks X = {X;|¢ = 1,...,n} where n is the number of stocks and Xj is the
stock “price relative” defined as X; = TP:E For example, X5 = 1.05 would imply that the fifth
stock in our portfolio went up by 5 percent in one day. In this section we present the investment
theory from the efficient hypothesis point of view, which assumes that X;’s independent and



identically distributed random variables and that the time series of X’s is a stationary ergodic
vector-valued stochastic process. We adopt the notion of the distribution of X as normal, for the
time being. As a part of our future work, we will re-examine this hypothesis and present portfolio
allocation techniques under the non-efficient model. Define a portfolio as a vector representing
the allocation of wealth over a collection of stocks: b = (by,b, b3, ..., bn). Therefore, the ratio
of wealth from start to the end of a trading day can be defined as: & = b'X. S, itself is a
random variable. As with most things associated with the stock markets, the distribution of
S is also subject of a lot of controversy. The Sharpe-Markowitz [7] of stock market tries to
maximize the expected value of S while minimizing its variance. In this model, one examines
the so-called efficient frontier, a region in the variance-mean space, while assuming that there
is a one-to-one correspondence between a true value of a stock and its variance. This is the
so-called -Capital Assets Pricing Model (CAPM). In Section 2.3 we present data compression
techniques applicable for optimal portfolio allocation problems under the CAPM model.

2 Market prediction via data compression

Data compression (DC) is the task of efficiently encoding a data source to derive a more compact
data representation by removing redundancy, while preserving the essential information in a
retrievable format. DC explicitly assumes that the input has an a priori probability distribution
that is exploited. DC algorithms have two distinct functions: encoding the source data and
decoding the encoded data. An encoding phase of DC algorithms performs two distinct tasks:
(1) learning the distribution of the source; (2) assigning codes based on this learning. These two
tasks are usually employed in tandem: the learning phase generates a dictionary that is used to
encode the source. The decoding phase reverses the dictionary look-up to recover the original
source data (or a close approximation thereof). DC algorithms can be used as predictive schemes
using the characteristics of the dictionary to predict the frequency of the source. This observed
relationship between DC and prediction has been extensively used in [15, 9, 10, 8, 5, 16, 17, 36,
11], particularly for stationary sources. In this section, we examine basic issues in prediction for
stationary sources. Later, we do present several new results for dynamic schemes, specifically
in relation with the stock market. Cover and Thomas [6] provide a theoretical background
to information complexity issues establishing a direct relationship between high compressibility
and high predictability. Vitter and Krishnan [36, 11] prove this result for some particular lossless
DC based prediction algorithms. Since the readers are likely to be experts in DC, our discussion
of DC is brief. We shall note prediction can be done by various known DC techniques, all in
the presence of a stationary source. DC schemes can be lossy or lossless. Lossy DC allows the
algorithm to permanently lose non-essential information to achieve higher compression ratios,
whereas lossless DC schemes insist that the decoded data should be identical to the source
data. Lossy DC techniques can be used to represent a source by mapping each source item to
one of finite number of dictionary elements that minimizes distortion under a suitable metric.
Quantization is a fundamental example of lossy compression. Scalar Quantization (SQ) observes
a single source datum and selects the nearest approximation value from a predetermined finite
set of allowed numerical values [1]. Vector Quantization (VQ) [18] is a generalization of SQ to
quantization of a vector, a point in n-dimensional Euclidean or any other metric space, according
to some vector space metric such as the metric induced by the {2 norm. VQ can be used for
predicting by filtering primary components to maintain correlations among different values.
Predictive VQ (PVQ) schemes were introduced by Fischer an Tinner [15] as well as Cuperman
and Gersho [9]. Extensive studies were performed by Cuperman and Gersho [10, 8], Chang and



Gray [5], and Fischer and Tinnen [16, 17]. Lossless DC can be achieved by assigning shorter
codes to frequently occurring source sequence, and vice versa. Lempel-Ziv algorithm [41, 34, 3]
is an example of this technique. Analogously, prediction can be achieved by assigning higher
probability to more frequently occurring sequences. Vitter and Krishnan [36, 11] use data
compression based prediction to devise prefetching algorithms for theoretically optimal caching
strategy. We present algorithms that use lossy and lossless schemes to predict movements on the
stock market. Our algorithms are applicable for optimal portfolio allocation, technical analysis
(charting) and other more advanced non-efficient market models. [33, 40, 4].

2.1 Vector quantization (VQ) based prediction

Vector quantization is a lossy DC technique is perfectly suited for market prediction under the
technical and other nonlinear models. For example, lossy compression techniques will map a
vector of a stock history to its representative under some desired metric, to form a collection
of equivalence classes of market moves, and will reduce prediction complexity by orders of
magnitude. All charting techniques can be viewed as implicit lossy compression schemes. VQ
can be achieved by representing all source data using a dictionary consisting of representative
vectors smaller in size and/or number than the original source. VQ maps an input vector to its
closest neighbor in the dictionary based on a given distortion measure, and represents the input
vector by the index to the dictionary [18]. We represent stock market time series data as a two
dimensional space-time vector, where the rows of the vector contain, for example the securities’
prices at the time indexed by the columns. Given a partial space-time vector, we can match it
to the nearest space-time vector using an appropriate distortion measure. The matching vector
is said to predict the unknown components as specified by it. Tree Structured VQ (TSVQ) is
a variant of VQ that can reduce the time complexity of VQ from linear to logarithmic [19].
A TSVQ dictionary is implemented as a d-ary tree whose intermediate nodes represent the
centroids of their children. TSVQ is most suited for our VQ-based prediction scheme for stock
market indices for technical or other non-efficient market models. We therefore implement this
variant of VQ for our empirical tests.

2.2 Lempel-Ziv based prediction

Lossless data compression can be regarded as a predictive algorithm applied to a set of quantized
or raw stock market data. It is well-suited for optimal allocation of funds as given by CAPM
in stock market portfolio theory. Lossless DC can be achieved by assigning shorter codes to
frequently occurring source sequence, and vice versa. Lempel-Ziv (LZ) algorithm [41, 34, 3]
is an example of this technique. LZ satisfies the unique parsing criteria: no two phrases in
the parse of the source are identical. Cover and Thomas [6] show that LZ’s unique parsing
property makes it optimal for sources with stationary ergodic memoryless distributions. Vitter
and Krishnan [36, 11] extend this result by proving that optimal compression algorithms can
be converted in optimal prediction algorithms assuming stationary ergodic distribution.

2.3 Multispectral prediction

Multispectral compression (MC) algorithms exploit the high degree of redundancy among spec-
tral bands to compress a multispectral image [29]. This spectral redundancy is similar to the
redundancies among stock market indices: only limited portion of spatial information changes
among bands. For example, stock indices from geographically close areas, stocks of similar
companies, interest rates and housing stocks are pairwise related to each other. Lossy MC is a
well-researched area [29, 20, 2]. The encoding phase of MC consists of the following steps: (1)
Histogram equalization, (2) Spectral transform (such as cosine or more advanced techniques,



e.g. wavelet transform), (3) Scalar or Vector Quantizer and (4) Lossless compressor such as
LZ [41]. The decoding process reverses each one of the above steps in complementary order.
The histogram equalization is a non-linear process that equalizes the probability distribution
function (PDF) p(t) of a random variable ¢ with PDF p4(s) of a desired random variable s.
It is accomplished by identifying a monotone non-decreasing map s = T'[t] that equalizes the
cumulative PDFs of the two images [23], and identifying the image that needs to be modified.
P(t) = 3¢ p(i) is equalized to Py(t) = Y i pa(i). This can be viewed as SQ mapping one set
of quantized spectra into another using a table to specify the mapping. Prediction is achieved
by breaking the source into blocks of different spectra and encoding it as a juxtaposed vector.
MC affords an impressive treatment of capital markets where several indices, returns, averages,
interest rates, etc. show strong correlation among one another. In fact, Fama [13] shows that
returns from different stocks exhibit up to 97% correlation with each other. Consequently, we
expect MC to yield high compression of various data associated with the stock markets such as
indices, returns, interest rates, etc. This enables us to exploit more information and combine
it efficiently. We are investigating the application of wavelet techniques and shall report our
results in near future.

2.4 Distortion controlled prediction

Our prediction algorithms can also be used to find a particular mode of the stock market. Vaga
and Peters [35, 30] describe a market to be in one of the following mode: efficient, transition,
chaotic and coherent, as defined in Section 1.3. By looking at the time-series of the changing
parameters of Levy distributed returns, we can predict new characteristic parameters of the
distribution. Consequently, by looking at the a, we can see how close our series is to efficiency,
and we can obtain precise measurements of predictive powers of our compression techniques. We
can therefore quantitatively measure the expected accuracy of compression algorithms for pre-
diction. Accordingly, we need different levels of granularity to preserve distortion. Traditionally
lossy DC algorithms have focused on compressing data at fixed bit rates. Markas and Reif [28]
present Distortion Controlled VQ (DCVQ) algorithms that comply with specified distortion
measures. When the market is in the efficient and chaotic mode, the information loss is more
tolerable. Hence, we used DCVQ algorithms [28] to relax the distortion control to smooth the
insignificant changes. On the other hand, when the market is in transition or coherent mode,
we can increase distortion control to some extent.

3 Prediction model

This section describes the development of prediction tables for stock market trends, so that
knowledge the past trends of a stock can allow us to estimate the prediction probabilities of
the stock’s future performance. This is a memory-based model, and this type of models offers
significant advantages when compared with memoryless techniques. The process of generating a
model for predicting trends in stocks can divided into three phases: the generation of prediction
tables, the prediction of trends based on the known information, and finally adaptation of the
model based on new data.

3.1 Generation of prediction tables

During the generation step, data consisting of either a collection of correlated stocks and/or
events that affect those classes of stocks are collected in a form of a discrete vector of fixed
length, which we call a stock-event. A large selection of such vectors will be used to generate
the VQ codebook vocabulary: each entry represents a sequence of events that indicate the past



performance of a stock. Training can be accomplished based on one of the known VQ training
algorithms (such as LBG method [24]). Since the traditional VQ algorithm is a memoryless
technique, some memory that keeps track of sequences of events, as well as their transitions
probabilities among different events must be implemented within the model. Given a particular
window of time, we calculate the current probability distribution of returns, and quantize it into
a dictionary of past distributions. For our analysis, we consider returns on the stock market to
be stable-Levy. This two-stage quantization is necessary for prediction because the first stage
will capture the deterministic components by deterministically weighing the past, and the VQ
stage will codify the present distribution to a nearest distribution under the same conditions in
a statistical sense.

3.2 Prediction

The prediction process can be seen as a predictive vector quantization(PVQ) algorithm [21].
PVQ consists of a series of discretization and matching operations that define the current state,
and a prediction process that searches the prediction tree and identifies the probability tables
for all possible transitions. The current state of a stock trend is defined as the sequence of the
N past stock-events. The stock data sources that form an event are discretized at N-past time
intervals, and a VQ process is initiated to identify their best-match vector from the existing
codebook. The string that is generated during this process represents the current state of the
stock. The complexity of the VQ algorithm is linear with respect to the size of the codebook.
This step can become computationally prohibitive for large vocabularies, likely to be generated
in stock market applications. The Tree-Structured Vector Quantization (TSVQ) [19] reduces
the complexity of the VQ method from linear to logarithmic time. In TSVQ, the vocabulary
is implemented in a d-ary tree form, whose intermediate nodes represent the centroids of their
children nodes and the leaf nodes are the actual codewords. Once the current state has been
computed, a sequence of events that exists in the prediction tree and matches with the current
state needs to be identified. During this process, we search the past performance of a class
of stocks to identify a sequence of trends that resemble the current performance of the stock.
If such sequence is found, and if there exists enough statistical information concerning the
possible trends of the stock, then we can predict how a stock is likely to behave in the next few
periods. The identification of the current state is accomplished by identifying the maximum-
length sequence of events that exists in the prediction tree. To achieve this, a string of past
events is formed and search in the prediction table is initiated to identify a match for the
current string. If a match is found, a new event is added to the sequence (N = N + 1) and
a new matching process is initiated. If there is no match, the previous sequence is used as
the current state. The matching process can be implemented efficiently using hashing tables
similarly to the textual substitution [34, 38] algorithms used for data compression purposes of
textual data. Once the maximum string has been identified, the prediction table for the future
values of stock is predicted similar to the encoding process of arithmetic coders [39].

3.3 Adaptation -
In this step, we use current information regarding the performance of a stock and prediction
errors of our model dynamically adapt the prediction tree. This will improve the performance
of our model. The adaptation part consists of modification of the transition tables so that the
model learns new information: creation of new tree nodes in case that observed transitions
do not exist in the current tables, and creation of new events once the distance between an
observed event and its best-match vector is larger than a predefined threshold. This last step is
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similar to the splitting step that takes place during the creation of VQ codebooks for image or
speech data. Once a vector (stock-event) whose distance from the best-match exceeds a certain
threshold has been found, a new entry is created in the prediction tree. If a collection of vectors
Xi, had B as the best-match vector, and a new vector Y has been encountered that has B as
its best-match vector, but its distance from B exceeds a certain threshold, a new codevector B’
is created. The X; vectors will then be reassigned to either B or B’ so that the quantization
error for all X; is minimized based on a given measure. It should be noted that a fair amount
of computation is involved in this step since a large portion of the prediction tree will have to
be readjusted.

4 Empirical results for Stock market prediction

4.1 Introduction

As noted earlier, data compression techniques are a perfect paradigm for stock market prediction.
For our empirical tests we have adopted a notion of markets being multimodal [35], the prices
obeying fractional Brownian motion and the returns distributed in accordance with stable-Levy
distribution. This approach embodies the state of the art in nonlinear, chaotic, stock market
models. It also presents some interesting compression issues. For example, we develop a dynamic
memory VQ technique in order to quantize a vector that may have a variable window size. This
window size is calculated by regarding the markets and statistically self-similar fractals and
calculating its fractional dimension using the R/S statistic of Mandelbrot [30]. The R/S statistic
adequately captures the long range memory of stock markets, and we can use this estimate to
truncate the window appropriately. It is important to be able to precisely calculate this window,
because if we quantized a price-time stock market vector that contained components that were
not influencing the present, or for that matter, the future prices, our prediction and compression
would be inaccurate. Once a memory window has been calculated, using lossy TVQ we map the
price-time vector to its proper equivalence class, under a given market mode. From this data
we can by the means of lossless LZ algorithm predict the next highest probable market mode,
price of a stock or a group of stocks or any other parameter we are interested in. Preliminary
experiments using only lossless techniques indicate a small, but significant degree of prediction.

4.2 Lossless compression - results

Below we present results of Lempel-Ziv for predicting rises and falls of all major world indices.
We consider logarithmic returns, and apply uniform scalar quantization of the entries. We
then run the LZ algorithm, and predict a rise or a fall from day to day returns. Each time
we guess correctly we score a +1, and each time we guess incorrectly we score nothing. If we
are at a leaf, we do not guess. The results, continent-wise, are tabulated below. Our lossless
prediction scheme yields an average success of 55.06 percent, which we find very encouraging.
It should be noted, however, that our results include periods where markets are stable(i.e. no
price changes), and hence would in return yield higher compression ratios. These, although very
few, instances do not significantly affect the results, and are discounted in our future work with
lossy compression.
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~ | Simulation results - U.S. and Canada |

Market Percent Correct
DowJones 51.10
iﬁfﬁgﬁ) gigg Asia and Africa I
Average 5945 Market % Correct

| Furope Hongkong 50.95

: Indonesia 60.03
Market % Correct Korea 53.98
Denmark 58.81 Malasyia 52.33
Germany 52.34 Phillipines | 53.97
Finland 61.85 Singapore, 53.21
Netherla 51.48 Taiwan 54.93
Norway 56.07 Thailand 52.58
Paris 57.11 Tokyo 51.93
Portugal 61.28 South Africa | 58.09
Spain 62.63 Average 54.20
Sweden 55.80
Swtzrlnd 51.93
United Kingdom | 52.85
Average 56.56 :
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