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Abstract

The classical plain-text representation of source code is convenient for programmers but requires parsing to uncover the deep
structure of the program. While sophisticated software tools parse source code to gain access to the program’s structure, many
lightweight programming aids such asgrep rely instead on only the lexical structure of source code. I describe a new XML
application that provides an alternative representation of Java source code. This XML-based representation, called JavaML, is
more natural for tools and permits easy specification of numerous software-engineering analyses by leveraging the abundance
of XML tools and techniques. A robust converter built with the Jikes Java compiler framework translates from the classical
Java source code representation to JavaML, and an XSLT stylesheet converts from JavaML back into the classical textual form.
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1 Introduction

Since the first computer programming languages, program-
mers have used a text representation as the medium for en-
coding software structure and computation. Over the years,
techniques have been developed that largely mechanize the
front-end of compilers—the part that performs the lexical
analysis and parsing necessary to uncover the structure of
programming language constructs represented as plain text.
Tools such as Lex/Flex and Yacc/Bison [42] automate these
tedious tasks by using well-founded concepts of regular ex-
pressions and grammars. Regular expressions describe how
individual characters combine to form tokens, and the gram-
mar enumerates how higher-level constructs are composed
recursively of other constructs and primitive tokens. To-
gether, these procedures convert a sequence of characters
into a data structure called anabstract syntax tree(AST)
which more directly reflects the structure of the program.

The textual representation of source code has several
nice properties. It is fairly concise and is similar to natural
languages, often making it easy to read. Text is a universal
data format thus making source code easy to exchange and
manipulate using a wide variety of tools including text edi-
tors, version control systems, and command pipeline utilities
such asgrep , awk, andwc.

Nevertheless, the classical source representation has nu-
merous problems. The syntax of popular contemporary lan-
guages such as C++ and Perl push the limits of parsing ca-
pabilities. Constructing a front-end for such languages is
difficult despite the support from tools. Perhaps more dis-
concerting is that evolving the syntax of the language of-
ten requires manipulating a fragile grammar. This limitation

complicates handling an evolving language.

1.1 Text representation and software tools

The most significant limitation of the classical source repre-
sentation is that the structure of the program is made man-
ifest only after parsing. This shortcoming forces language-
specific parsing functionality to be duplicated in every tool
that needs to reason about the program beyond its lexical
nature. Compilers, by necessity, must work with the AST,
and numerous other software-engineering tools would ben-
efit from access to a structured representation of the source
code. Unfortunately, many software-engineering tools do
not embed a parser and thus are limited to lexical tasks.

There are several reasons why tool developers often
avoid embedding a parser in tools. As mentioned pre-
viously, building a complete front-end is challenging for
syntactically-complex languages. Although re-use (e.g., of
the grammar definition) simplifies the implementation, the
resulting AST is not always intuitive. An AST typically re-
flects quirky artifacts of the grammar rather than represent-
ing the programming-level constructs directly. Addition-
ally, embedding the front-end of a compiler may be deemed
overkill when targeting a simple analysis that can do “well
enough” with lexical information.

Other complications arise if a transformation of the
source code is desired: a change in the AST must ultimately
be reflected in the classical source representation because
that is the primary long-term storage format. Recreating a
text representation from an AST is most straightforwardly
done using an unparsing approach that can create undesired
lexical side effects (e.g., changes in indentation or whites-
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pace). Such changes can confuse the other lexical tools that
a developer relies upon. For example, a version control sys-
tem is unable to disambiguate between a meaningful change
and a gratuitous one effected unintentionally.

Finally, using a parser in a tool necessarily targets that
tool to a specific language, thus reducing its applicability
and generality. Worse, because there is no standard struc-
tured external representation of a source program, support-
ing inter-operability of independent tools even targeting the
same programming language is very difficult.

The end result of these complications is that develop-
ers often use simple, lexically-oriented tools such asgrep

or search-and-replace within an editor. This approach sacri-
fices accuracy: imagine wanting to rename a local variable
from result to answer . With simple search-and-replace,
all occurrences of the word will be changed, even if they
refer to characters inside comments, literal strings, or an un-
related instance field.

An alternate route taken by some developers is to rely
instead on a fixed set of tools provided within an integrated
development environment (IDE) that has access to the struc-
ture of their source program via an integrated language-
specific parser. This approach sacrifices flexibility. IDEs
generally provide only a limited set of capabilities and ex-
tending those is hard. Additionally, analyses and transfor-
mation on source code are often hard to automate or per-
form in batch using existing interactive environments. Some
more advanced IDEs, such as IBM VisualAge for C++ [48],
expose an application programming interface to the repre-
sentation of the program. Although an improvement, this
technique still suffers from an inability to separate simple
tools from a complex environment and additionally creates
a dependency on proprietary technology that may be unde-
sirable.

1.2 A solution

One of the fundamental issues underlying the above prob-
lems is the lack of a canonical structured representation of
the source code. We need a universal format for directly
representing program structure that software tools can easily
analyze and manipulate. The key observation is that XML,
the eXtensible Markup Language [9], provides exactly this
capability and is an incredibly empowering complementary
representation for source code.

In this paper, I introduce the Java Markup Language,
JavaML—an XML application for describing Java source
programs. The JavaML document type definition (DTD)
specifies the various elements of a valid JavaML document
and how they may be combined. There is a natural corre-
spondence between the elements and their attributes and the
programming language constructs they model. The struc-
ture of the source program is reflected in the nesting of el-
ements in the JavaML document. With this representation,

we can then leverage the wealth of tools for manipulating
and querying XML and SGML documents to provide a rich,
open infrastructure for software engineering transformations
and analyses on Java source code.

JavaML is well-suited to be used as a canonical repre-
sentation of Java source code for tools. It shares most of
the strengths of the classical representation and overcomes
many weaknesses. The next section describes relevant fea-
tures of Java and XML and section 3 details the markup lan-
guage and the implementations of converters between the
classical representation and JavaML. Section 4 gives numer-
ous examples of how existing XML and SGML tools can
be exploited to perform source code analyses and transfor-
mations on the richer representation provided by JavaML.
Sections 5 and 6 describe related work and suggest avenues
for exciting future work, and section 7 concludes. The full
document type definition (DTD) for JavaML appears in ap-
pendix A and further examples of converted source code are
available from the author’s JavaML web page [4].

2 Background

The Java Markup Language is influenced by and benefits
from numerous features of the two technologies it builds a
bridge between: Java and XML.

2.1 Java

Although the XML-based representation of programming
language constructs is language independent, Java is an ex-
cellent candidate for experimenting with these ideas and
techniques.

Java is a popular object-oriented programming language
developed by Sun Microsystems in the mid-1990s [3, 25]. It
features a platform-independent execution model based on
the Java Virtual Machine (JVM) and owes its quick accep-
tance to its use as a programming language for World Wide
Web applications. Java combines a simple object model
reminiscent of Smalltalk [26] with Algol block structure, a
C++-like [49] syntax, a static type system, and a package
system inspired by Modula-2 [10].

As in most other object-oriented (OO) languages, the
primary unit of decomposition in Java is aclasswhich spec-
ifies the behaviour of a set of objects. Each class can define
severalmethods, or behaviours, similar to functions or pro-
cedures. A class can also definefields, or state variables,
that are associated withinstancesof the class calledobjects.
Classes can inherit behaviour and state fromsuperclasses,
thus forming a hierarchy of inter-related classes that permits
factoring related code into classes at the top of the hierarchy,
and encourages re-use. Behaviours are invoked by sending a
messageto a target receiver object that is a request to execute
a method defined for that class. Choosing what method to
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execute in response to a message is calleddynamic dispatch
and is based on the run-time class of the object receiving
the message. For example, an instance of theColoredBall

class may respond to thedraw message differently than an
instance of aBall class. This ability to behave differently
upon receipt of the same message is largely responsible for
the extensibility benefits touted by the OO community.

Java is being widely used both in industry and in edu-
cation, and it remains popular as a programming language
on the web. Unlike C++, a Java class definition exists in a
single, self-contained file. There are no separate header files
and implementation files, and Java is largely free from order-
dependencies of definitions. A method body (when present)
is always defined immediately following the declaration of
the method signature. Additionally, Java lacks an integrated
preprocessor. These features combine to make Java source
programs syntactically very clean and make Java an ideal
language for representing using XML.1

2.2 XML: Extensible Markup Language

XML is a standardized eXtensible Markup Language [9]
that is a subset of SGML, the Standard Generalized Markup
Language [37]. The World Wide Web Consortium (W3C)
designed XML to be lightweight and simple, while retain-
ing compatibility with SGML. Although HTML (HyperText
Markup Language) is currently the standard web document
language, the W3C is positioning XML to be its replace-
ment. While HTML permits authors to use only a pre-
determined fixed set of tags in marking up their document,
XML allows easy specification of user-defined markup tags
adapted to the document and data at hand [28, 27].

An XML document consists simply of text marked up
with tags enclosed in angle braces. A simple example is:

<?xml version="1.0"?>
<!DOCTYPE email SYSTEM "email.dtd">
<email>

<head>
<to>Mom</to>
<to>Dad</to>
<from>Greg</from>
<subject>My trip</subject>

</head>
<body encoding="ascii">

The weather is terrific!
</body>

</email>

The<email> is an open tag for theemail element. The
</email> at the end of the example is the corresponding
close tag. Text and other nested tags can appear between the
open and close constructs. Empty elements are allowed and

can be abbreviated with a specialized form that combines
the open and close tags:<tag-name /> . In the above doc-
ument, theemail element contains two immediate children
elements: ahead and abody . Additionally, an XML open
tag can associate attribute/value pairs with an element. For
example, thebody element above has the valueascii for
its encoding attribute. For an XML document to bewell-
formed, the document must simply conform to the numerous
syntactic rules required of XML documents (e.g., tags must
be balanced and properly nested, attribute values must be of
the proper form and enclosed in quotes, etc.).

A more stringent characterization of an XML document
is validity. An XML document is valid if and only if it both
is well-formed and adheres to its specifieddocument type
definition, or DTD. A document type definition is a formal
description of the grammar of the specific language to be
used by a class of XML documents. It defines all the per-
mitted element names and describes the attributes that each
kind of element may possess. It also restricts the structure
of the nesting within a valid XML document. The preceding
XML example is valid with respect to the following DTD:

<!-- email DTD -->
<!ENTITY % encoding-attribute

"encoding (ascii|mime) #REQUIRED">
<!ELEMENT email (head,body)>
<!ELEMENT head (to+,from,subject?)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT body (#PCDATA)>
<!ATTLIST body

encrypted (yes|no) #IMPLIED
%encoding-attribute;>

According to this DTD, there are six element types. The
email element must contain exactly onehead followed by
exactly onebody element. Thehead , in turn, must con-
tain one or moreto elements and then afrom element,
followed by an optionalsubject element. The order of
the elements must be as specified. Each of those elements
may contain text (also know asparsed character dataor PC-

DATA). The singleATTLIST declaration in the DTD speci-
fies that thebody elementmayspecify a value for theen-

crypted attribute, andmustspecify eitherascii or mime

for theencoding attribute. TheENTITY declaration of the
encoding-attribute (at the top of the DTD) is a simple
way to factor out redundant text—the text given between the
quotes is substituted as is into the followingATTLIST decla-
ration (and, importantly, can be used in multipleATTLIST s).

An XML document that is declared to adhere to this
DTD is not valid if any of the above criteria are not met.
For example, if thefrom element is missing from anemail

1The applicability of this approach to other languages is discussed further in section 6.
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document, that document is not valid, though it may still be
well-formed.

When modeling data in XML, a primary design decision
is choosing whether to nest elements or to use attributes. In
the above example, we could have folded all of the informa-
tion contained in thehead into attributes of theemail el-
ement if we chose. There are several important differences
between using attributes and nesting elements:

• attributes/value pairs are unordered, while nested chil-
dren have a specific order;

• values for attributes may contain only character data,
and may not include other markup, while nested chil-
dren can arbitrarily nest further; and

• only one value for an attribute can be given, while
multiple elements of the same class can be included
by a parent element (e.g., we can have multipleto

elements contained by thehead ).

Although the above distinctions sometimes mandate us-
ing one technique or the other, the decision is often initially
a matter of taste. However, later experiences using the re-
sulting documents may suggest revisiting the decision in or-
der to facilitate or simplify some desired manipulation of the
document.

Another useful data modeling feature of XML is the
ability to attach unique identifiers to elements via anid at-
tribute. These elements can then be referred to byidref

attributes of other elements. A well-formed XML document
must have everyidref value match anid given in the docu-
ment. Theid –idref links describe edges that enable XML
to represent generalized directed graphs, not just trees.

XML, in part due to its SGML heritage, is very well
supported by tools such as Emacs editing modes, structure-
based editors, DTD parsers and editors, validation utili-
ties, querying systems, transformation and style languages,
and many more tools. Numerous other W3C recommenda-
tions relate to XML including Cascading Style Sheets [8],
XSL (Extensible Stylesheet Language) [19], XSLT (XSL for
Transformations) [14], XPath [16], and DOM (Document
Object Model) [2].

3 Java Markup Language (JavaML)

The Java Markup Language provides a complete self-
describing representation of Java source code. Unlike the
conventional character-based representation of programs,
JavaML reflects the structure of the software artifact directly
in the nesting of elements in the XML-based syntax. Addi-
tionally, it represents extra edges in the program graph using
the id andidref linking capabilities of XML.

Because XML is a text-based representation, many of
the advantages of the classical source representation remain.

Because JavaML is an XML application, it is easy to parse,
and all existing tools for working with XML can be applied
to Java source code in its JavaML representation. JavaML
tools can leverage the existing infrastructure and exploit the
canonical representation to improve their inter-operability.

3.1 Possible approaches

Although the basic approach of using an XML application to
model source code is fairly straightforward, there is a large
design space for possible markup languages. The most ob-
vious possibility is to simply use XML as a textual dump
format of a typical abstract syntax tree derived from parsing
source code. Consider the simple Java program:

import java.applet.*;
import java.awt.*;

public class FirstApplet
extends Applet {

public void paint(Graphics g) {
g.drawString("FirstApplet", 25, 50);

}
}

Performing the obvious (but very unsatisfying) transla-
tion from the AST of the above might result in the below
XML for just the first line of code:

<compilation-unit>
<ImportDeclarationsopt>

<ImportDeclarations>
<ImportDeclaration>

<TypeImportOnDemandDeclaration>
import
<Name>

<QualifiedName>
<Name>

<SimpleName>java</SimpleName>
</Name>
.
<Name>

<SimpleName>applet</SimpleName>
</Name>

<QualifiedName>
</Name>

. * ;
</TypeImportOnDemandDeclaration>

</ImportDeclaration>
</ImportDeclarations>

</ImportDeclarationsopt>
...
</compilation-unit>
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Certainly this translation is far from ideal: it is unaccept-
ably verbose and exposes numerous uninteresting details of
the underlying grammar that was used to parse the classical
source representation.

An alternate possibility is to literally mark-up the Java
source program without changing the text of the program
(i.e., to only add tags). This approach might convert the
FirstApplet.java implementation to:

<java-source-program>
<import-declaration>import java.applet.*;

</import-declaration>
<import-declaration>import java.awt.*;

</import-declaration>

<class-declaration>
<modifiers>public</modifiers> class

<class-name>FirstApplet</class-name>
extends

<superclass>Applet</superclass> {
<method-definition>

<modifiers>public</modifiers>
<return-type>void</return-type>

<method-name>paint</method-name>
(<formal-arguments>

<type>Graphics</type>
<name>g</name>

</formal-arguments>)
<statements>{
g.drawString("FirstApplet", 25, 50);

} </statements>
</method-definition>

}
</class-declaration>
</java-source-program>

This format is a huge step towards a more useful markup
language. We have definitely added value to the source code
and it is trivial to convert back to the classical representa-
tion: we simply remove all tags and leave the content of
the elements behind (this removal of markup is exactly what
thestripsgml [31] utility does). Although this representa-
tion seems useful for many tasks, it still has some problems.
First, many of the details of the code are included in the
textual content of elements. If we want to determine what
packages are being imported, our XML query would need
to lexically analyze the content of the import-declaration el-
ements. Such analysis is inconvenient and does not take ad-
vantage of the capabilities that XML provides. Perhaps more
significantly, the above XML representation retains artifacts
from the classical source code that another representation
might permit us to abstract away from and free ourselves of
those syntactic burdens altogether.

3.2 The chosen representation

The prototype JavaML representation I have chosen aims to
model the programming language constructs of Java (and,
indeed, similar object-oriented programming languages) in-
dependently of the specific syntax of the language. One can
easily imagine a SmalltalkML that would be very similar,
and even an OOML that could be converted into both classi-
cal Java source code or Smalltalk file-out format. With this
goal in mind, JavaML was designed from first principles of
the constructs and then iteratively refined to improve the use-
fulness and readability of the resulting markup language.

JavaML is defined by the document type definition
(DTD) in appendix A, but is best illustrated by example. For
theFirstApplet.java source code listed above, we rep-
resent the program in JavaML as shown in figure 1.

In JavaML, concepts such as methods, superclasses,
message sends, and literal numbers are all directly repre-
sented in the elements and attributes of the document con-
tents. The representation reflects the structure of the pro-
gramming language in the nesting of the elements. For ex-
ample, the literal string"FirstApplet" is a part of the
message send, thus theliteral-string element is nested
inside thesend element. This nesting is even more appar-
ent when presented visually as in figure 2. See the author’s
JavaML web page [4] for further examples.

The careful reader will observe that the JavaML repre-
sentation is about three times longer than the classical source
code. That expansion is a fundamental tradeoff of moving
to a self-describing data format such as XML. It is impor-
tant that the terse classical representation can be employed
by programmers in certain tasks including ordinary devel-
opment and program editing (though perhaps JavaML may
be the underlying representation). JavaML is complemen-
tary to classical source code and is especially appropriate
for tools while remaining accessible to and directly readable
by developers.

3.3 Design decisions

JavaML provides more than just the structure of the source
program. In figure 1, notice the use of the formal-argument
g in line 17 as the target of the message send. Theidref

attribute of thatvar-ref tag points back at the referenced
formal-argument element (through itsid attribute). (The
id value chosen for a to-be-referenced element must be
unique within a document so each identifier is branded with
an integer to keep the values distinct.) This linking is stan-
dard XML, thus XML tools are able to trace from a variable
use to its definition to, e.g., obtain the type of the variable.
Similar linking is done for local (block-declared) variables,
and more could be done for other edges in the program struc-
ture graph. Although a singlevar-use tag would suffice for
denoting any mention of a variable, JavaML instead disam-
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE java-source-program SYSTEM "java-ml.dtd">
3
4 <java-source-program name="FirstApplet.java">
5 <import module="java.applet.*"/>
6 <import module="java.awt.*"/>
7 <class name="FirstApplet" visibility="public">
8 <superclass class="Applet"/>
9 <method name="paint" visibility="public" id="meth-15">

10 <type name="void" primitive="true"/>
11 <formal-arguments>
12 <formal-argument name="g" id="frmarg-13">
13 <type name="Graphics"/></formal-argument>
14 </formal-arguments>
15 <block>
16 <send message="drawString">
17 <target><var-ref name="g" idref="frmarg-13"/></target>
18 <arguments>
19 <literal-string value="FirstApplet"/>
20 <literal-number kind="integer" value="25"/>
21 <literal-number kind="integer" value="50"/>
22 </arguments>
23 </send>
24 </block>
25 </method>
26 </class>
27 </java-source-program>

Figure 1: FirstApplet.java converted to JavaML.

Figure 2: Tree views of the JavaML representation of theFirstApplet example as displayed by the XML Notepad utility [44]
(on the left) and XML Spy [36] (on the right).
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biguates between references to variable values and variables
used as lvalues:var-ref elements are used for the former,
var-set for the latter.

Throughout JavaML, attributes of elements are used
whenever the structure of the value can never be more com-
plex than a simple text string. Attributes are used for modi-
fiers such assynchronized and final and for visibility
settings such aspublic or private . Attributes are not
used for properties such as types because types have some
structure: a type can consist of a base name and a number of
dimensions, and it could also reference the definition of the
class that implements the type, if desired. If, say, a return
type were just the value of an attribute on the method ele-
ment, the end user would unacceptably have to do string pro-
cessing on the attribute’s value “int[][] ” to determine that
the base type of that two-dimensional array was the primitive
type int . Instead, types are modeled as explicit child ele-
ments such as<type name="int" dimensions="2"> .

JavaML generalizes related concepts to simplify some
analyses but also preserves distinctions that may be
needed for other tasks. For example,45 and 1.9

are represented as:<literal-number kind="integer"

value="45"> and <literal-number kind="float"

value="1.9"> , respectively. An alternate possible markup
is: <literal-integer value="45"> and <literal-

float value="1.9"> but using separate element classes
eliminates the tight relationship that both values are num-
bers and can complicate using the representation. Instead,
we use a single element tag and disambiguate these literals
based on akind attribute. Thus, we can still tell the differ-
ence between a floating point literal and an integer literal,
but in the common case we gain the same flexibility of nu-
meric types that the Java language has.

Another place where JavaML generalizes language con-
structs is loops. Bothfor andwhile loops can be viewed
as general looping constructs with 0 or more initializers, a
guarding test that occurs before each iteration, 0 or more up-
date operations, and a body of statements that comprise the
looped-over instructions. Thus, instead of using two classes
of elements,for-loop andwhile-loop , JavaML uses a
singleloop element that has akind attribute with value ei-
therfor or while . When awhile loop is converted, it will
have neitherinitializer nor update children, yet afor

loop could potentially contain many of each. In contrast,
distinct do-loop elements are used fordo loops because
they have their test performed at the end of the loop, instead
of at the start.

As yet another example, we represent both instance and
class (i.e., static) fields asfield elements with astatic

attribute used to disambiguate. Although there are more
substantial differences between these two concepts than be-
tweenwhile andfor loops, it still seems beneficial to use
a single kind of element for both kinds of fields.

Local variable declarations provide a syntactic shorthand

that raises an interesting question about their underlying rep-
resentation. The code segmentint dx, dy; defines two
variables both of typeint , but with perhaps a subtle addi-
tional intention: that the two variables have the same type.
For contrast, considerint weight, i; . Here, there prob-
ably isnot the implicit desire that the two variables have the
same type, but instead the shorthand syntax is being used
simply for brevity. Because it is hard to automate distin-
guishing these cases, JavaML simply preserves this syntactic
feature by using acontinued="true" attribute on variable
declarations that exploit this shorthand.

Comments in source code are especially troublesome
to deal with in JavaML. At present, the DTD permits cer-
tain “important” elements (includingclass , anonymous-

class , interface , method , field , block , loop ) to
specify acomment attribute. Determining which comments
to attach to which elements is challenging; the current im-
plementation simply queues up comments and includes all
that appear since the last “important” element in thecom-

ment attribute of the current such element.
An alternate possibility for comments is to just insert

them in the JavaML representation as parsed character data
interspersed with the normal structure, thus leaving the se-
mantic inference problem to another tool. Unfortunately,
this would force various elements to have “mixed content”
which reduces the validation capabilities when checking for
DTD conformance. Using XML Schema [51] instead of
DTDs may make this approach more useful.

3.4 Implementation of converters

To experiment with the design of JavaML and gain expe-
rience in using the representation, it was essential to im-
plement a converter from the Java classical source repre-
sentation to JavaML. Within the IBM Jikes Java compiler
framework [32], I added anXMLUnparse method to each
of the AST nodes. This change, along with some small ad-
ditional code for managing the options to request the XML
output, results in a robust and fast JavaML converter. In
total, I added about 1650 non-comment-non-blank lines of
C++ code to the Jikes framework to support JavaML.

The converter has been tested by converting 15,000 lines
of numerous sample programs including the 4300 line Cas-
sowary Constraint Solving Toolkit [5] and over twenty di-
verse applets [50]. Each of the files converted was then vali-
dated with respect to the JavaML DTD using James Clark’s
Jade package’snsgmls tool [12]. The processing of the en-
tire regression test takes only about twelve seconds on the
author’s RedHat6-based dual Pentium III-450 machine.

Also implemented is an XSLT stylesheet that outputs the
classical source representation given the JavaML represen-
tation. The style sheet consists of 65 template rules and just
under 600 lines of code. It was tested (using both Saxon [39]
and XT [15]) on numerous programs by processing a file
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to JavaML, back-converting it, and then re-converting to
JavaML: no differences should exist between the result and
the originally-converted JavaML file.

All of the source code is available from the JavaML
home page [4].

4 Leveraging XML

JavaML uses XML as an alternate, structured representation
of a Java source program. Although the abstraction away
from syntactic details of Java is convenient, the more impor-
tant benefit is that JavaML enables the use of the rich in-
frastructure developed to support SGML and XML. Instead
of building analysis and transformation tools from scratch
to work on a proprietary binary structured format for a pro-
gram, existing SGML and XML tools can be used, com-
bined, and extended. XML tools encompass a broad range of
features that include querying and transformation, document
differencing and merging [33], and simple APIs for working
with the document directly. In this paper, I will (for space
reasons) limit discussion to uses of only three tool groups:

• the XML toolbox (ltxml) from Edinburgh Univer-
sity [52] which containssgcount , sgrpg , sggrep ,
and more;

• XSLT [14] processors (e.g., XT [15] and Saxon [39])
and the XML parser XP [13];

• the Perl XML::DOM package [20] which exposes a
DOM level 1 [2] interface to an XML tree.

These are just a very small subset of the tools that prove
useful when working with JavaML. In the following ex-
amples, we will queryHangman.java.xml , the JavaML
representation of the Hangman applet available at Sun Mi-
crosystems’ applet page [50] and also at the JavaML home
page [4]. Although these examples are small by real-world
standards, XML and SGML tools target documents ranging
up through lengthy books so the implementations are de-
signed to scale well.

One common software engineering task (for better or for
worse) is to accumulate metrics about a source code artifact.
With JavaML, the SGML utilitysgcount does an excellent
job of summarizing the constructs in a Java program:2

% sgcount Hangman.java.xml

outputs:

arguments 103
array-initializer 4
assignment-expr 60
catch 3
class 1

if 27
true-case 27
false-case 7
field 28
field-access 18
import 5
java-source-program 1
literal-char 5
literal-boolean 5
literal-null 5
literal-number 127
literal-string 61
local-variable 23
loop 13
method 18
new 4
new-array 5
return 5
send 99
type 96
var-ref 262
var-set 52
...

In the above output, each row lists an element class and
the number of times that that element appeared in the doc-
ument. Thus, we can easily see that there are 18method

elements, thus there are 18 method definitions. Similarly,
we can see that there is 1 class definition, 262 variable ref-
erences, 99 message sends, and 61 string literals. This sum-
mary is far more indicative of the content of a program than
a typical lexical measure such as the number of lines of code.

Suppose we wish to see all the string literals that a pro-
gram contains. We can do this trivially usingsggrep on the
JavaML representation of the program:

% sggrep ’.*/literal-string’ \
< Hangman.java.xml

outputs:

<literal-string value=’audio/dance.au’/>
<literal-string value=’img/dancing-duke/T’/>
<literal-string value=’.gif’/>
<literal-string value=’img/hanging-duke/h’/>
<literal-string value=’.gif’/>
<literal-string value=’Courier’/>
<literal-string value=’Courier’/>
...

Notice that the output ofsggrep is also a (not necessarily
valid nor even well-formed) XML document. Thus we can
string together SGML and XML tools in a Unix pipeline to
combine tools in novel and useful ways. For example, it
is sometimes worthwhile to convert results back into ordi-
nary Java source representation to aid the human software-
engineer. We can do this usingresults-to-plain-

2The output of commands has been pruned and slightly edited for presentation.
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source which is a wrapper around an XSLT stylesheet that
converts JavaML back into plain source code:

% sggrep ’.*/literal-string’ \
< Hangman.java.xml \
| results-to-plain-source

outputs:

"audio/dance.au"
"img/dancing-duke/T"
".gif"
"img/hanging-duke/h"
".gif"
"Courier"
"Courier"
...

We can also query the JavaML source for elements based
on values of their attributes. For example, if we wish to find
all sends of the messagesetFont we can do so easily and
precisely:

% sggrep ’.*/send[message=setFont]’ \
< Hangman.java.xml

outputs:

<send message=’setFont’>
<target>

<var-ref name=’g’ idref=’frmarg-212’/>
</target>
<arguments>

<var-ref name=’font’ idref=’locvar-611’/>
</arguments>

</send>
<send message=’setFont’>

<target>
<var-ref name=’g’ idref=’frmarg-212’/>

</target>
<arguments>

<var-ref name=’wordFont’/>
</arguments>

</send>

Because of the structural markup, places where the seven
characters “setFont” appear in a comment, a literal string, or
a variable name willnot be reported by this query. A sim-
ilar attempt to retrieve this information using lexical tools
would likely contain those false positives. Imagine trying to
find all type cast expressions using only lexical tools—the
over-use of parentheses in Java expressions make that task
very difficult, while it is trivial with JavaML thanks to the
cast-expr element.

Another class of common analyses is the semantic
checks done by the compiler prior to translation. For ex-
ample, in Java code, only abstract classes may have abstract
methods. When compiling, a semantic error will be flagged

if this rule is violated. We can query a JavaML document for
concrete (i.e., not abstract) classes that contain an abstract
method:

% sggrep -q ’.*/class[abstract!=true]/\
method[abstract=true]’ \

< Hangman.java.xml

and the output will be empty because this semantic restric-
tion is not violated in our target document (i.e., the analyzed
program).

A common error for novice Java programmers is to acci-
dentally use the assignment operator,=, instead of using the
equality test operator,==. Although the Java type checker
will catch most of these errors at compile time, it will miss
the problem if the assigned-to variable is aboolean . If we
wish to find these questionable constructs,sggrep makes
this analysis trivial thanks to the JavaML representation:

% sggrep -q ’.*/if/test/assignment-expr’ \
< Hangman.java.xml

The sgrpg (SGML RePort Generator) program per-
mits combining a top-level query with a restriction on the
children and an output format for the results (a common
paradigm for querying tools [24]). For example:

% sgrpg ’.*/method’ \
’.*/send[message=drawLine]’ \
’’ ’%s %s

’ visibility name < Hangman.java.xml

outputs:

public paint

searches for method definitions that contain message sends
of the messagedrawLine . It then outputs thevisibil-

ity andname attributes of the matched elements as shown
above, confirming our intuition that thepaint() method is
the only function that invokeddrawLine .

A wide variety of analyses are possible just using the
querying capabilities provided by standard XML tools.
Other things we can find are returns from inside for loops,
all definitions of integer variables, string variables that do
not conform to our project’s naming convention, and much
more.

The preceding queries illustrate a shortcoming of cur-
rent XML querying tools: most respond only with the
matched elements—they do not provide any context infor-
mation about where in the document the results were found.
Although this behaviour is appropriate when treating an
XML file strictly as a database, the software engineer may
want to know where the results were in the JavaML file to
then map them back into positions in the source document
for editing or viewing by hand. I address this difficulty in
JavaML by attaching information about the original source-
code location of constructs as attributes of various elements.
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The location information includes the starting and ending
line and column numbers of the construct (the filename is
found in the ancestorjava-class-file element).

In addition to queries, transformations on source code
are very useful when modifying and evolving software arti-
facts. Querying tools generally only prune elements from
the source document or combine elements from multiple
documents. More powerful transformations are possible us-
ing XSLT [14], DSSSL [38], or directly manipulating the
document using a DOM (Document Object Model) [2] in-
terface accessible from numerous languages including Perl,
Python, Java, and C++. For example, we can rename all
methods namedisBall to FIsBall using a straightfor-
ward XSLT stylesheet:

<xsl:stylesheet ......>

<xsl:param name="oldname"/>
<xsl:param name="newname"/>

<!-- mostly do an identity transform -->
<xsl:template match="*|@*|text()">

<xsl:copy>
<xsl:apply-templates

select="*|@*|text()"/>
</xsl:copy>

</xsl:template>

<xsl:template
match="method[@name=$oldname]">

<method name="{$newname}">
<xsl:apply-templates/>

</method>
</xsl:template>

<xsl:template
match="send[@message=$oldname]">

<send message="{$newname}">
<xsl:apply-templates/>

</send>
</xsl:template>

</xsl:stylesheet>

and executing it like so:

xt source.java.xml method-rename.xsl \
oldname=isBall newname=FIsBall

While a similar textual transformation could be per-
formed using a text editor or Sed, those tools will over-
aggressively change all occurrences of the six character se-
quenceisBall . Variable names, literal strings, comments,
and packages might incorrectly be affected by the text-based
transformation. This is a key benefit of the JavaML repre-
sentation: we have more fine-grained, semantically-based
control over the affected constructs.

Other possibilities for transformations include using a
style sheet to output a browse-able HTML representation of
the program (see figure 3) or syntax-highlighted PostScript.
Adding debug or instrumentation code at entry and exit to
and from functions is also straightforward (see figure 4).

5 Related work

A key benefit of JavaML is its ability to leverage the grow-
ing infrastructure of SGML and XML related tools and tech-
niques as described in the previous section. Various re-
searchers have similarly approached the problem of improv-
ing software engineering and development tools with vary-
ing degrees of success.

TAWK [29] extends the AWK [21] paradigm by match-
ing patterns in the AST of a C program. Numerous XML
querying tools provide this same functionality for JavaML,
and the event-action framework is similar to that used by
SAX (Simple API for XML) [43].

ASTLog [18] extends the Prolog [17] logic program-
ming language with the ability to reason about an exter-
nal database that models the AST. Unlike Prolog, ASTLog
statements are evaluated with respect to a current object.
The approach that Crew uses may be interesting to apply to
the XML world, but the numerous XML tools already pro-
vide comparable functionality through a more conventional
(if perhaps less convenient) framework.

GRAS [40] is a graph-oriented database system for soft-
ware engineering environments. Front-ends are available for
integrating source-code from ordinary representation of C,
Modula-3, and Modula-2 into the database. The database
approach may prove useful for storing XML, especially
in the context of the software-engineering applications for
which JavaML is designed.

The Software Development Foundation [46] is an open
architecture based on XML designed for developing tools
for programming environments. An XML database format
called CSF—code structure format—stores relationships,
but includes no details about the computation performed.
Chava [41] takes a similar approach, but is based on the C
Program Database [11]. Chava also permits interrogating
Java code via reverse engineering the byte-codes.

CCEL [22] provides a metalanguage for expressing non-
linguistic intentions (i.e., ones that cannot be expressed
in the language) about software artifacts written in C++.
JavaML can provide a similar capability by simply writing
queries that search for violations of the intended invariants
and reporting them as part of the edit, build, or regression-
test procedure throughout the development cycle.

Microsoft’s Intentional Programming group [47] has
long been working on a more abstract representation of com-
putation that is syntax-independent. Their goal appears to
be to permit developers to describe new abstractions along
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Figure 3: A view of Hangman.java.xml processed
by an XSLT HTML pretty-printer and indexer. The
method index links to the start of the definition of
each method, and syntax highlighting is done using
color-coding and italics.

#!/usr/bin/perl -w
use XML::DOM;
use IO::Handle;

my $filename = shift @ARGV;

my $parser = new XML::DOM::Parser;
my $doc = $parser->parsefile ($filename);

my $nodes = $doc->getElementsByTagName("method");

for (my $i = 0; $i < $nodes->getLength(); $i++) {
my $method = $nodes->item($i);
my $block = $method->

getElementsByTagName("block")->item(0);
my $name = $method->getAttribute("name");

my $start_code
= SendMessageBlock($doc,"Tracer","StartMethod",

$name);
my $exit_code

= SendMessageBlock($doc,"Tracer","ExitMethod",
$name);

$block->insertBefore($start_code,
$block->getFirstChild());

$block->appendChild($exit_code);
}
print $doc->toString;

sub SendMessageBlock {
my ($doc,$target_var,$method_name,$data) = (@_);
# insert, e.g: Tracer.StartMethod("paint");

return parseXMLFragment($doc,<<"__END_FRAGMENT__"
<send message="$method_name">

<target><var-ref name="$target_var"/></target>
<arguments>

<literal-string value="$data"/>
</arguments>

</send>
__END_FRAGMENT__

);
}

sub parseXMLFragment {
my ($doc,$code) = (@_);
my $newdoc = $parser->parse($code);
my $subtree = $newdoc->getDocumentElement();
$newdoc->removeChild($subtree);
$subtree->setOwnerDocument($doc);
return $subtree;

}

Figure 4: Perl program to instrument every method of a Java
class with invocations ofTracer.StartMethod( methodname) and
Tracer.ExitMethod( methodname) . The program uses the Docu-
ment Object Model (DOM) [2] Perl module [20].
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with techniques to reduce those abstractions down to known
primitives. In essence, they are interested in permitting the
developer to grow a domain-specific language as they build
their software. JavaML is especially exciting as a repre-
sentation for this approach. We can view new abstractions
as incremental extensions to DTDs. In order for the new
document type, call it Java++ML, to still be compilable by
a stock Java compiler, the developer must simply write a
transformation from Java++ML to JavaML. Because DTDs
are exceptionally easy to extend, this approach is tenable
and likely a fruitful avenue for future work. There are sev-
eral utilities for documenting and comparing DTDs (e.g.,
dtd2html and dtddiff of the perlSGML package [31])
that would be helpful when applying this technique.

6 Future work

Although this paper has presented a markup language for
Java, the same basic approach can be applied to other pro-
gramming languages, or even to translate among languages.
To the extent that the representation abstracts away syntax,
JavaML may also prove useful in permitting the import of vi-
sual representations such as Unified Modeling Language di-
agrams [1, 35]. Certainly generating visual representations
of important properties of software artifacts is on the imme-
diate horizon given the capabilities of XSL and DSSSL.

One significant complication in applying this approach
to C++, another popular conventional object-oriented-
programming language, is the C preprocessor. The C pre-
processor provides a first pass of textual processing to permit
abstractions that cannot otherwise be expressed in the core
C++ language. These abstractions are often very important
to the understandability and maintainability of the code, but
do not interact well with parsing techniques [23, 6].

A useful extension to the current transformation system
is to do more cross-linking of elements. Type elements could
reference their defining classes in other JavaML documents.
Import declarations could reference the top-level documen-
tation for the imported package. Many more possibilities are
feasible.

The current converter that translates back from JavaML
to the classical source representation is based on XSLT.
Adding a Jikes front-end would permit the compiler to read
JavaML directly. Such an implementation would use an
XML parser (e.g., XML4C++ [34]) to construct the XML
DOM from the JavaML source, then simply recursively
build the Jikes internal AST using the DOM API. Back-
conversion to the plain source code could then be done using
Jikes’s pre-existing conventional unparser.

Using JavaML as the primary source representation has
the potential to simplify the compiler beyond just eliminat-
ing its classical front-end. Some semantic analyses can be
removed from the compiler once it knows that the input is

a valid JavaML document. It will be useful to characterize
which semantic errors are provably impossible to encounter
given that precondition. Because XML Schema [51, 7] pro-
vide an even finer-grained specification of validity for XML
documents, it is likely beneficial to migrate JavaML to use
an them instead of a DTD after the working drafts are final-
ized. Additionally, more semantic analyses can be moved
into the editing environment reasonably painlessly in the
form of straightforward queries (such as some of those de-
scribed earlier in section 4).

Because the concise textual representation of source
code is nicely suited to human programmers, it is unlikely
that they will be interested in discarding their favourite text
editor anytime soon. We must investigate better ways to con-
vert interactively and incrementally between the classical
source representation and JavaML. The capabilities could
then be used to transparently support interactive editing of
XML representations using plain-text format to which hu-
man engineers are accustomed. The considerable work on
structured text editors [30, 45] is highly relevant and may
finally achieve acceptance give the incredible resources that
will now be thrown at the problem given the growing com-
mercial importance of XML technology.

7 Conclusion

JavaML is an alternate representation of Java source pro-
grams that is based on XML. Unlike the classical textual
source representation, the JavaML representation makes it
easy for software tools to reason about programming-level
constructs in a Java program. This benefit results from the
ability of JavaML to more directly represent the structure of
the program.

Given JavaML, the wealth of pre-existing XML and
SGML tools can perform numerous interesting and use-
ful analyses and transformations of Java source programs.
XML tools are improving continually to support the grow-
ing infrastructure of XML-based documents. Ultimately,
JavaML could replace the classical source representation of
Java programs as the storage format for programs, relegating
text-parsing to just one of many possible ways of interacting
directly with the structured representation of the software
artifact throughout the development process.
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A JavaML DTD

<!-- java-ml.dtd 0.96 -->

<!ENTITY % visibility-attribute
"visibility (public|private|\

protected) #IMPLIED">
<!ENTITY % interface-visibility-attribute

"visibility (public) #IMPLIED">
<!ENTITY % kind-attribute

"kind (integer|long|float|\
double) #IMPLIED">

<!ENTITY % mod-final
"final CDATA #IMPLIED">

<!ENTITY % mod-static
"static CDATA #IMPLIED">

<!ENTITY % mod-volatile
"volatile CDATA #IMPLIED">

<!ENTITY % mod-transient
"transient CDATA #IMPLIED">

<!ENTITY % mod-native
"native CDATA #IMPLIED">

<!ENTITY % mod-abstract
"abstract CDATA #IMPLIED">

<!ENTITY % mod-synchronized
"synchronized CDATA #IMPLIED">

<!ENTITY % location-info
"line CDATA #IMPLIED col CDATA #IMPLIED

end-line CDATA #IMPLIED end-col CD
ATA #IMPLIED

comment CDATA #IMPLIED">
<!ENTITY % expr-elems

"send|new|new-array|var-ref|\
field-access|array-ref|paren|\
assignment-expr|conditional-expr|\
binary-expr|unary-expr|cast-expr|\
instanceof-test|literal-number|\
literal-string|literal-char|\
literal-boolean|literal-null|this|\
super">

<!ENTITY % stmt-elems
"block|local-variable|try|throw|if|\

switch|loop|do-loop|return|continue|\
break|synchronized|%expr-elems;">

<!ELEMENT code-fragment ANY>
<!ELEMENT result ANY>
<!ELEMENT java-source-program

(java-class-file+)>
<!ELEMENT java-class-file

(package-decl?,import*,

(class|interface)+)>
<!ATTLIST java-class-file

name CDATA #IMPLIED
version CDATA #IMPLIED>

<!ELEMENT import EMPTY>
<!ATTLIST import

module CDATA #REQUIRED>
<!ELEMENT class

(superclass?, implement*,
(class|interface|constructor|method|\

field|static-initializer|\
instance-initializer)*)>

<!ATTLIST class
name CDATA #REQUIRED
%visibility-attribute;
%mod-static;
%mod-abstract;
%mod-final;
%mod-synchronized;
%location-info;>

<!ELEMENT anonymous-class
(superclass?, implement*,

(constructor|method|field|\
instance-initializer)*)>

<!ATTLIST anonymous-class
%mod-abstract;
%mod-final;
%mod-synchronized;
%location-info;>

<!ELEMENT superclass EMPTY>
<!ATTLIST superclass

name CDATA #REQUIRED>
<!ELEMENT interface

(extend*, (method|field)*)>
<!ATTLIST interface

name CDATA #REQUIRED
%interface-visibility-attribute;
%location-info;>

<!ELEMENT implement EMPTY>
<!ATTLIST implement

interface CDATA #REQUIRED>
<!ELEMENT extend EMPTY>
<!ATTLIST extend

interface CDATA #REQUIRED>
<!ELEMENT field

(type,
(array-initializer|%expr-elems;)?)>

<!ATTLIST field
name CDATA #REQUIRED
%visibility-attribute;
%mod-final;
%mod-static;
%mod-volatile;
%mod-transient;
%location-info;>

<!ELEMENT constructor
(formal-arguments,throws*,

(super-call|this-call)?,
(%stmt-elems;)?)>
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<!ATTLIST constructor
name CDATA #REQUIRED
id ID #REQUIRED
%visibility-attribute;
%mod-final;
%mod-static;
%mod-synchronized;
%mod-volatile;
%mod-transient;
%mod-native;
%location-info;>

<!ELEMENT method
(type,formal-arguments,throws*,

(%stmt-elems;)?)>
<!ATTLIST method

name CDATA #REQUIRED
id ID #REQUIRED
%visibility-attribute;
%mod-abstract;
%mod-final;
%mod-static;
%mod-synchronized;
%mod-volatile;
%mod-transient;
%mod-native;
%location-info;>

<!ELEMENT formal-arguments
(formal-argument)*>

<!ELEMENT formal-argument (type)>
<!ATTLIST formal-argument

name CDATA #REQUIRED
id ID #REQUIRED
%mod-final;>

<!ELEMENT send (target?,arguments)>
<!ATTLIST send

message CDATA #REQUIRED
idref IDREF #IMPLIED>

<!ELEMENT block (label*,(%stmt-elems;)*)>
<!ATTLIST block

%location-info;>
<!ELEMENT label EMPTY>
<!ATTLIST label

name CDATA #REQUIRED>
<!ELEMENT target (%expr-elems;)>
<!ELEMENT return (%expr-elems;)?>
<!ELEMENT throw (%expr-elems;)>
<!ELEMENT throws EMPTY>
<!ATTLIST throws

exception CDATA #REQUIRED>
<!ELEMENT new

(type,arguments,anonymous-class?)>
<!ELEMENT type EMPTY>
<!ATTLIST type

primitive CDATA #IMPLIED
name CDATA #REQUIRED
dimensions CDATA #IMPLIED
idref IDREF #IMPLIED>

<!ELEMENT new-array
(type,dim-expr*,array-initializer?)>

<!ATTLIST new-array
dimensions CDATA #REQUIRED>

<!ELEMENT dim-expr (%expr-elems;)>
<!ELEMENT local-variable

(type,
(static-initializer|array-initializer|\
%expr-elems;)?)>

<!ATTLIST local-variable
name CDATA #REQUIRED
id ID #REQUIRED
continued CDATA #IMPLIED
%mod-final;>

<!ELEMENT array-initializer
(array-initializer|%expr-elems;)*>

<!ATTLIST array-initializer
length CDATA #REQUIRED>

<!ELEMENT arguments (%expr-elems;)*>
<!ELEMENT literal-string EMPTY>
<!ATTLIST literal-string

value CDATA #REQUIRED>
<!ELEMENT literal-char EMPTY>
<!ATTLIST literal-char

value CDATA #REQUIRED>
<!ELEMENT literal-number EMPTY>
<!ATTLIST literal-number

value CDATA #REQUIRED
%kind-attribute;
base CDATA "10">

<!ELEMENT var-ref EMPTY>
<!ATTLIST var-ref

name CDATA #REQUIRED
idref IDREF #IMPLIED>

<!ELEMENT field-access (%expr-elems;)>
<!ATTLIST field-access

field CDATA #REQUIRED>
<!ELEMENT var-set EMPTY>
<!ATTLIST var-set

name CDATA #REQUIRED>
<!ELEMENT field-set (%expr-elems;)>
<!ATTLIST field-set

field CDATA #REQUIRED>
<!ELEMENT package-decl EMPTY>
<!ATTLIST package-decl

name CDATA #REQUIRED>
<!ELEMENT assignment-expr

(lvalue,(%expr-elems;))>
<!ATTLIST assignment-expr

op CDATA #REQUIRED>
<!ELEMENT lvalue

(var-set|field-set|%expr-elems;)>
<!ELEMENT instanceof-test

((%expr-elems;),type)>
<!ELEMENT binary-expr

((%expr-elems;),(%expr-elems;))>
<!ATTLIST binary-expr

op CDATA #REQUIRED>
<!ELEMENT paren (%expr-elems;)>
<!ELEMENT unary-expr (%expr-elems;)>
<!ATTLIST unary-expr
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op CDATA #REQUIRED
post (true|false) #IMPLIED>

<!ELEMENT cast-expr (type,(%expr-elems;))>
<!ELEMENT literal-boolean EMPTY>
<!ATTLIST literal-boolean

value (true|false) #REQUIRED>
<!ELEMENT literal-null EMPTY>
<!ELEMENT synchronized (expr,block)>
<!ELEMENT expr (%expr-elems;)>
<!ELEMENT if (test,true-case,false-case?)>
<!ELEMENT test (%expr-elems;)>
<!ELEMENT true-case (%stmt-elems;)?>
<!ELEMENT false-case (%stmt-elems;)?>
<!ELEMENT array-ref (base,offset)>
<!ELEMENT base (%expr-elems;)>
<!ELEMENT offset (%expr-elems;)>
<!ELEMENT static-initializer

(%stmt-elems;)*>
<!ELEMENT instance-initializer

(%stmt-elems;)*>
<!ELEMENT super-call (arguments)>
<!ELEMENT this-call (arguments)>
<!ELEMENT super EMPTY>
<!ELEMENT this EMPTY>
<!ELEMENT loop

(init*,test?,update*,(%stmt-elems;)?)>
<!ATTLIST loop

kind (for|while) #IMPLIED
%location-info;>

<!ELEMENT init
(local-variable|%expr-elems;)*>

<!ELEMENT update (%expr-elems;)>
<!ELEMENT do-loop ((%stmt-elems;)?,test?)>
<!ELEMENT try

((%stmt-elems;),catch*,finally?)>
<!ELEMENT catch

(formal-argument,(%stmt-elems;)?)>
<!ELEMENT finally (%stmt-elems;)>
<!ELEMENT continue EMPTY>
<!ATTLIST continue

targetname CDATA #IMPLIED>
<!ELEMENT break EMPTY>
<!ATTLIST break

targetname CDATA #IMPLIED>
<!ELEMENT conditional-expr

((%expr-elems;),(%expr-elems;),
(%expr-elems;))>

<!ELEMENT switch
((%expr-elems;),switch-block+)>

<!ELEMENT switch-block
((case|default-case)+,

(%stmt-elems;)*)>
<!ELEMENT case (%expr-elems;)>
<!ELEMENT default-case EMPTY>
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