
Constraint Cascading Style Sheets for the Web

Greg J. Badros
Dept. of Computer Science and Engineering

University of Washington, Box 352350
Seattle, WA 98195-2350, USA

gjb@cs.washington.edu

Alan Borning
Dept. of Computer Science and Engineering

University of Washington, Box 352350
Seattle, WA 98195-2350, USA

borning@cs.washington.edu

Kim Marriott
School of Computer Science and Software Engineering

Monash University
Clayton, Victoria 3168, Australia

marriott@cs.monash.edu.au

Peter Stuckey
Dept. of Computer Science and Software Engineering

University of Melbourne
Parkville, Victoria 3052, Australia

pjs@cs.mu.oz.au

ABSTRACT
Cascading Style Sheets have been introduced by the W3C as
a mechanism for controlling the appearance of HTML docu-
ments. In this paper, we demonstrate how constraints provide
a powerful unifying formalism for declaratively understand-
ing and specifying style sheets for web documents. With con-
straints we can naturally and declaratively specify complex
behaviour such as inheritance of properties and cascading of
conflicting style rules. We give a detailed description of a
constraint-based style sheet model, CCSS, which is compat-
ible with virtually all of the CSS 2.0 specification. It allows
more flexible specification of layout, and also allows the de-
signer to provide multiple layouts that better meet the desires
of the user and environmental restrictions. We also describe a
prototype extension of the Amaya browser that demonstrates
the feasibility of CCSS.

KEYWORDS: Constraints, HTML, style sheets, CSS, Cas-
cading Style Sheets, CCSS, World Wide Web, page layout,
Cassowary

INTRODUCTION
Since the inception of the Web there has been tension be-
tween the “structuralists” and the “designers.” On one hand,
structuralists believe that a Web document should consist
only of the content itself and tags indicating the logical struc-
ture of the document, with the browser free to determine the
document’s appearance. On the other hand, designers (un-
derstandably) want to specify the exact appearance of the
document rather than leaving it to the browser.

With the recent championing ofstyle sheetsby the World-
Wide-Web Consortium (W3C), this debate has resulted in a

compromise. The web document proper should contain the
content and structural tags, together with a link to one or
more style sheets that determine how the document will be
displayed. Thus, there is a clean separation between doc-
ument structure and appearance, yet the designer has con-
siderable control over the final appearance of the document.
W3C has introducedCascading Style Sheets, first CSS 1.0
and now CSS 2.0, for use with HTML documents.

Despite the clear benefits of cascading style sheets, there are
several areas in which the CSS 2.0 standard can be improved.

• The designer lacks control over the document’s appearance
in environments different from her own. For example, if
the document is displayed on a monochrome display, if
fonts are not available, or if the browser window is sized
differently, then the document’s appearance will often be
less than satisfactory.

• CSS 2.0 has seemingly ad hoc restrictions on layout spec-
ification. For example, a document element’s appearance
can often be specified relative to the parent of the element,
but generally not relative to other elements in the docu-
ment.

• The CSS 2.0 specification is complex and sometimes vague.
It relies on procedural descriptions to understand the effect
of complex language features, such as table layout. This
makes it difficult to understand how features interact.

• Browser support for CSS 2.0 is still limited. We conjecture
that this is due in part to the complexity of the specifica-
tion, but also because the specification does not suggest a
unifying implementation mechanism.

We argue that constraint-based layout provides a solution to
all of these issues, because constraints can be used to specify
declarativelythe desired layout of a web document. They
allow partial specification of the layout, which can be com-
bined with other partial specifications in a predictable way.
They also provide a uniform mechanism for understanding
layout and cascading. Finally, constraint solving technology
provides a unifying implementation technique.



We describe a constraint-based extension to CSS 2.0, called
Constraint Cascading Style Sheets(CCSS). The extension
allows the designer to add arbitrary linear arithmetic con-
straints to the style sheet to control features such as object
placement, and finite-domain constraints to control features
such as font properties. Constraints may be given a strength,
reflecting their relative importance. They may be used in
style rules in which case rewritings of the constraint are cre-
ated for each applicable element. Multiple style sheets are
available for the same media type (e.g., paper vs. screen) with
preconditions on the style sheets determining which are ap-
propriate for a particular environment and user requirements.

Our main technical contributions are:

• A demonstration that constraints provide a powerful uni-
fying formalism for declaratively understanding and spec-
ifying CSS 2.0.

• A detailed description of a constraint-based style sheet
model, CCSS, which is compatible with virtually all of
the CSS 2.0 specification. CCSS is a true extension of
CSS 2.0. It allows more flexible specification of layout,
and also allows the designer to provide multiple layouts
that better meet the desires of the user and environmental
restrictions.

• A prototype extension of the Amaya browser that demon-
strates the feasibility of CCSS. The prototype makes use
of the sophisticated constraint solving algorithm Casso-
wary [4] and a simple one-way binary acyclic finite-domain
solver based on BAFSS [12].

BACKGROUND
Cascading Style Sheets(CSS 1.0 in 1997 and CSS 2.0 in
1998) were introduced by the W3C in association with the
HTML 4.0 standard. In this section we review relevant as-
pects of CSS 2.0 [6] and HTML 4.0 [9].

CSS 2.0 and HTML 4.0 provide a comprehensive set of
“style” properties for each type of HTML tag. By setting
the value of these properties the document author can control
how the browser will display each element. Broadly speak-
ing, properties either specify how to position the element
relative to other elements, e.g.text-indent , margin , or
float , or how to display the element itself, e.g.font-size

or color .

Although the author can directly annotate elements in the
document with style properties, CSS encourages the author
to place this information in a separate style sheet and then
link or import that file. Thus, the same document may be
displayed using different style sheets and the same style sheet
may be used for multiple documents, easing maintenance of
a uniform look for a web site.

A style sheet consists ofrules. A rule has aselectorthat
specifies the document elements to which the rule applies,
anddeclarationsthat specify the stylistic effect of the rule.
The declaration is a set ofproperty/valuepairs. Values may

<HTML> <HEAD>
<TITLE>Simple Example</TITLE>
<LINK REL="stylesheet"

HREF="simple.css"
TYPE="text/css"> </HEAD>

<BODY>
<H1 ID=h>Famous Quotes</H1>
<P ID=p> At a party at Blenheim Palace,

Lady Astor said to
Winston Churchill:

<BLOCKQUOTE ID=q1>
If I were married to you, I’d put
poison in your coffee. And he responded:
<BLOCKQUOTE ID=q2>

If you were my wife, I’d drink it.
</BLOCKQUOTE>

</BLOCKQUOTE>
</P>

</BODY>
</HTML>

Figure 1: Example HTML Document

be either absolute or relative to the parent element’s value.

For instance, the style sheet

H1 { font-size: 13pt }
P { font-size: 11pt }
BLOCKQUOTE { font-size: 90% }

Figure 2: simple.css

has three rules. The first uses the selectorH1 to indicate that
it applies to all elements with tagH1 and specifies that those
first-level headings should be displayed using a 13 pt font.
The second rule specifies that paragraph elements should use
an 11 pt font. The third rule specifies the appearance of
text in aBLOCKQUOTE, specifying that the font-size should
be 90% of that of the surrounding element.

We can use this style sheet to specify the appearance of the
HTML document shown in Figure 1. Notice the link to the
style sheet and that we have included anID attribute for all
elements since we will refer to them later.1

Selectors come in three main flavors:type, attribute, and
contextual. These may be combined to give more complex
selectors. We have already seen examples of a type selector
in which the document elements are selected by giving the
“type” of their tag. For example, the type-selectorH1 refers
to all first-level heading elements. The wildcard type, “* ”,
matches all tags.

Attribute selectors choose elements based on the values of
two attributes that each element in the document tree may

1Marking all elements withID attributes defeats the modularity and re-
use benefits of CSS; we over-useID tags here strictly as an aid to discussing
our examples.



HTML

HEAD BODY

H1 P

BLOCKQUOTE

BLOCKQUOTE

LINKTITLE

Figure 3: Document tree for the HTML of Figure 1.

optionally provide:CLASSand ID . Multiple elements may
specify the sameCLASSvalue, while theID value should be
unique.

Selection based on theCLASSandID attributes provides con-
siderable power. By usingCLASSattributes and selectors, the
author can categorize various document elements into groups
and then apply different formatting to each of the groups.
Similarly, by usingID attributes and selectors, the author can
single out document elements for special formatting and then
refer to them from the style sheet. Elements with a specific
class value are selected using the syntax “. class”, while in-
stance ids are selected with “#id”.

Contextual selectors allow the author to take into account
where the element occurs in the document, i.e. its context.
They are based on the document’sdocument tree, which cap-
tures the recursive structure of the tagged elements. A con-
text selector allows selection based on the element’s ances-
tors in the document tree.

For instance, the preceding document has the document tree
shown in Figure 3. If we want to ensure the innermost block
quote does not have its size reduced relative to its parent, we
could use

BLOCKQUOTE BLOCKQUOTE { font-size: 100% }

Less generally, we could individually override the font size
for the secondBLOCKQUOTEby using a rule with anID se-
lector:

#Q2 { font-size: 100% }

Many style properties are inherited by default from the el-
ement’s parent in the document tree. Generally speaking,
properties that control the appearance of the element itself,
such asfont-size , are inherited, while those that control
its positioning are not.

As another example, consider the HTML document shown in
Figure 4. We can use a style sheet to control the width of the
columns in the table. For example,table.css (Figure 5)
contains rules specifying that the elements of the classes
medcol and thincol have widths 30% and 20% of their

<HTML> <HEAD>
<TITLE>Table Example</TITLE>
<LINK REL="stylesheet"

HREF="table.css"
TYPE="text/css"> </HEAD>

<BODY>
<TABLE ID=t>

<COL ID=c1 CLASS=medcol>
<COL ID=c2>
<COL ID=c3 CLASS=thincol>
<TR>

<TD COLSPAN=2>
<IMG ID=i1 SRC="back.gif"></TD>

<TD><IMG ID=i2 SRC="next.gif"></TD>
</TR>
<TR>

<TD>Text1</TD>
<TD>Text2</TD>
<TD>Text3</TD>

</TR>
</TABLE>

</BODY>
</HTML>

Figure 4: Example HTML Document

parent tables, respectively. (Note the use of the class selector
“ . ” syntax).

.medcol { width: 30% }

.thincol { width: 20% }

Figure 5: table.css

One of the key features of CSS is that it allows multiple style
sheets for the same document. Thus a document might be
displayed in the context of the author’s special style sheet for
that document, a default company style sheet, the user’s style
sheet and the browser’s default style sheet. This is handled
in CSS bycascadingthe style sheets, permitting each of the
sheets to affect the final rendering.

Cascading, inheritance, and multiple style sheet rules match-
ing the same element may mean that there are conflicts among
the rules as to what value a particular style property for that
element should take. The exact details of which value is cho-
sen are complex. Within the same style sheet, inheritance is
weakest, and rules with more specific selectors are preferred
to those with less specific selectors. For instance, each of the
rules

#Q2 { font-size: 100% }
BLOCKQUOTE BLOCKQUOTE { font-size: 100% }

is more specific than

BLOCKQUOTE { font-size: 90% }

Among style sheets, the values set by the designer are pre-
ferred to those of the user and browser, and for otherwise



equal conflicting rules, those in a style sheet that is imported
or linked first have priority over those subsequently imported
or linked. However, a style sheet author may also annotate
rules with the strength!important , which will override this
behavior. In CSS 2.0, for rules designated with strength!im-

portant , user-specified rules take priority over designer-
specified rules.2

Despite its power, CSS 2.0 still has a number of limitations.
One limitation is that a style property may only be relative to
the element’s parent, not to other elements in the document.
This can result in clumsy specifications, and makes some rea-
sonable layout constraints impossible to express. For exam-
ple, it is not possible to require that all tables in a document
have the same width, and that this should be the smallest
width that allows all tables to have reasonable layout. With
CSS 2.0, one can only give the tables the same fixed size or
the same fixed percentage width of their parent element.

The other main limitation is that it is difficult for the designer
to write style sheets that degrade gracefully in the presence
of unexpected browser and user limitations and desires. For
instance, the author has little control over what happens if
the desired fonts sizes are not available. Consider the style
sheetsimple.css again. Imagine that only 10 pt, 12 pt, and
14 pt fonts are available. The browser is free to use 12 pt and
10 pt for headings and paragraphs respectively, or 14 pt and
12 pt, or even 12 pt and 12 pt. Part of the problem is that
rules always give definite values to style properties. When
different style sheets are combined only one rule can be used
to compute the value. Thus a rule is either on or off, leading
to discontinuous behavior when style sheets from the author
and user are combined. For instance, a sight-impaired user
might specify that all font sizes must be greater than 11 pt.
However, if the designer has chosen sufficiently large fonts,
the user wishes to use the designer’s size. This is impossible
in CSS 2.0.

CONSTRAINT CASCADING STYLE SHEETS
Our solution to these problems is to use constraints for spec-
ifying layout. A constraint is simply a statement of a rela-
tion (in the mathematical sense) that we would like to have
hold. Constraints have been used for many years in inter-
active graphical applications for such things as specifying
window and page layout. They allow the designer to specify
whatare the desired properties of the system, rather thanhow
these properties are to be maintained. The major advantage
of using constraints is that they allow partial specification of
the layout, which can be combined with other partial spec-
ifications in a predictable way. In this section, we describe
our constraint-based extension to CSS 2.0, calledConstraint
Cascading Style Sheets(CCSS).

One complication in the use of constraints is that they may

2This seemingly-inconsistent relative ordering of the!important
preferences was changed from CSS 1.0 to guarantee that the user has ulti-
mate control over the appearance of a document.

conflict. To allow for this we use theconstraint hierarchy
formalism [3]. A constraint hierarchy consists of a collec-
tion of constraints, each labeled with a strength. There is a
distinguished strength labeledREQUIRED: such constraints
must be satisfied. The other strengths denote preferences.
There can be an arbitrary number of such strengths, and con-
straints with stronger strengths are satisfied in preference to
ones with weaker strengths. Given a system of constraints,
the constraint solver must find a solution to the variables that
satisfies the required constraints exactly, and that satisfies the
preferred constraints as well as possible, giving priority to
those more strongly preferred. The choice of solution de-
pends on the comparator function used to measure how well
a constraint is satisfied. In our examples we shall assume the
weighted-sum-bettercomparator that sums the errors in sat-
isfying each of the constraints, weighting each error by the
strength of that constraint. By using an appropriate set of
strength labels we can model the behavior of CSS 2.0.

A Constraint View of CSS 2.0
Hierarchical constraints provide a simple, unifying way of
understanding much of the CSS 2.0 specification. This view-
point also suggests that constraint solvers provide a natu-
ral implementation technique. Each style property and the
placement of each element in the document can be mod-
eled by a variable. Constraints on these variables arise from
browser capabilities, default layout behavior arising from the
type of the element, from the document tree structure, and
from the application of style rules. The final appearance of
the document is determined by finding a solution to these
constraints.

The first aspect of CSS 2.0 we consider is the placement of
the document elements (i.e., page layout). This can be mod-
eled using linear arithmetic constraints. To illustrate this, we
examine table layout—one of the most complex parts of CSS
2.0. The key difficulty in table layout is that it involves infor-
mation flowing bottom-up (e.g. from elements to columns)
and top-down (e.g. from table to columns). The CSS 2.0
specification is procedural in nature, detailing how this oc-
curs. By using constraints, we can declaratively specify what
the browser should do, rather than how to do it. Furthermore,
the constraint viewpoint allows a modular specification. For
example, to understand how a complex nested table should
be laid out, we simply collect the constraints for each com-
ponent, and the solution to these is the answer. With a pro-
cedural specification it is much harder to understand such
interaction.

Consider the style sheettable.css (Figure 5) and the as-
sociated HTML document (Figure 4). The associated layout
constraints are shown in Figure 6. The notation#id[prop]
refers to the value of the propertyprop for the presentation
element corresponding to the document element with IDid.3

Since we are dealing with a table, the system automatically
3We use associative array-like syntax for referring to properties of el-

ements to avoid the confusion that the alternative “.selector” form would



(1) #t[width] = #c1[width]+
#c2[width] + #c3[width] REQUIRED

(2) #c1[width] ≥ width(“Text1”) REQUIRED

(3) #c2[width] ≥ width(“Text2”) REQUIRED

(4) #c3[width] ≥ width(“Text3”) REQUIRED

(5) #c3[width] ≥ #i2[width] REQUIRED

(6) #c1[width] + #c2[width] ≥ #i1[width] REQUIRED

(7) #t[width] = 0 WEAK

(8) #c1[width] = 0.3 ∗ #t[width] DESIGNER

(9) #c3[width] = 0.2 ∗ #t[width] DESIGNER

Figure 6: Example layout constraints

creates a constraint (1) relating the column widths and table
width.4 Similarly, there are automatically created constraints
(2-6) that each column is wide enough to hold its content, and
(7) that the table has minimal width. Constraints (8) and (9)
are generated from the style sheet. Notice the different con-
straint strengths: from weakest to strongest they areWEAK,
DESIGNER and REQUIRED. Since REQUIRED is stronger
than DESIGNER, the column will always be big enough to
hold its contents. TheWEAK constraint#t[width] = 0

cannot be satisfied exactly; the effect of minimizing its er-
ror will be to minimize the width of the table, but not at the
expense of any of the other constraints.

These constraints provide a declarative specification of what
the browser should do. This approach also suggests an im-
plementation strategy: to lay out the table, we simply use
a linear arithmetic constraint solver to find a solution to the
constraints. The solver implicitly takes care of the flow of in-
formation in both directions, from the fixed widths of the im-
ages upward, and from the fixed width of the browser frame
downward.

Linear arithmetic constraints are not the only type of con-
straints implicit in the CSS 2.0 specification. There are also
constraints over properties that can take only a finite num-
ber of different values, including font size, font type, font
weight, and color. Such constraints are calledfinite domain
constraints and have been widely studied by the constraint
programming community [14]. Typically, they consist of a
domain constraintfor each variable giving the set of values
the variable can take (e.g., the set of font sizes available) and
required arithmetic constraints over the variables.

As an example, consider the constraints arising from the doc-
ument in Figure 1 and style sheetsimple.css (Figure 2).
The corresponding constraints are shown in Figure 7. The
domain constraints (1-4) reflect the browser’s available fonts.
The remaining constraints result from the style sheet rules.
Note that the third rule generates two constraints (7) and (8),
one for each block quote element.

cause due to CSS’s pre-existing use of “.” as a class-name prefix in selectors
of rules.

4For simplicity, we ignore margins, borders and padding in this example.

(1) #h[font-size] ∈ {9, 10, 12, 16, 36, 72} REQUIRED

(2) #p[font-size] ∈ {9, 10, 12, 16, 36, 72} REQUIRED

(3) #q1[font-size] ∈ {9, 10, 12, 16, 36, 72} REQUIRED

(4) #q2[font-size] ∈ {9, 10, 12, 16, 36, 72} REQUIRED

(5) #h[font-size] = 13 DESIGNER

(6) #p[font-size] = 11 DESIGNER

(7) #q1[font-size] = 0.9 ∗ #p[font-size] DESIGNER

(8) #q2[font-size] = 0.9 ∗ #q1[font-size] DESIGNER

Figure 7: Example finite domain constraints

#h[font-size] = 13 〈DESIGNER, 0, 0, 1〉
#p[font-size] = 11 〈DESIGNER, 0, 0, 1〉
#q1[font-size] = 0.9 ∗ #p[font-size] 〈DESIGNER, 0, 0, 1〉
#q2[font-size] = 0.9 ∗ #q1[font-size] 〈DESIGNER, 0, 0, 1〉
#q2[font-size] = 1.0 ∗ #q1[font-size] 〈DESIGNER, 0, 0, 2〉

Figure 8: Example of overlapping rules

Both of the preceding examples have carefully avoided one
of the most complex parts of the CSS 2.0 specification: what
to do when multiple rules assign conflicting values to an el-
ement’s style property. As discussed earlier, there are two
main aspects to this: cascading several style sheets, and con-
flicting rules within the same style sheet.

We can model both aspects by means of hierarchical con-
straints. To do so we need to refine the constraint strengths
we have been using. Apart fromREQUIRED, each strength is
a lexicographically-ordered tuple

〈cs, i, c, t〉.

The first component in the tuple,cs, is theconstraint im-
portanceand captures the author-suggested strength of the
constraint and its position in the cascade. The constraint
importance is one ofWEAK, BROWSER, USER, DESIGNER,
DESIGNER-IMPORTANT, orUSER-IMPORTANT (ordered from
weakest to strongest). The importanceWEAK is used for au-
tomatically generated constraints only. The last three com-
ponents in the tuple capture the specificity of the rule that
generated the constraint:i is the number ofID attributes,c
is the number ofCLASSattributes, andt is the number of tag
names in the rule (i.e., the depth of the contextual selection).

As an example, consider the constraints arising from the doc-
ument in Figure 1 with the style sheet

H1 { font-size: 13pt }
P { font-size: 11pt }
BLOCKQUOTE { font-size: 90% }
BLOCKQUOTE BLOCKQUOTE { font-size: 100% }

The constraints and their strengths for those directly gener-
ated from the style sheet rules are shown in Figure 8. Be-
cause of its greater weight, the last constraint listed will
dominate the second to last one, giving rise to the expected



BODY[font-size] = 12 〈BROWSER, 0, 0, 0〉
#h[font-size] = BODY[font-size] 〈WEAK, 0, 0, 0〉
#p[font-size] = BODY[font-size] 〈WEAK, 0, 0, 0〉
#q1[font-size] = #p[font-size] 〈WEAK, 0, 0, 0〉
#q2[font-size] = #q1[font-size] 〈WEAK, 0, 0, 0〉
#q1[font-size] = 8 〈DESIGNER, 0, 0, 1〉
#q2[font-size] = 8 〈DESIGNER, 0, 0, 1〉

Figure 9: Example of inheritance rules

behavior—that the longer contextual selection of a block-
quote within a blockquote will govern the appearance of
those nested blockquotes.

The remaining issue we must deal with is inheritance of style
properties such as font size, and the expression of this inher-
itance within our constraint formalism. For each inherited
property, we need to automatically create an appropriate con-
straint between each element and its parent. At first glance,
these should simply beWEAK equality constraints. Unfor-
tunately, this does not model the inherent directionality of
inheritance.

For instance, imagine displaying the document in Figure 1
with the style sheet

BLOCKQUOTE { font-size: 8pt }

where the default font size is 12 pt. The scheme outlined
above gives rise to the constraints shown in Figure 9. One
possible weighted-sum-better solution to these constraints is
that the heading is in 12 pt and the rest of the document
(including the paragraph) is in 8 pt. The problem is that
the paragraph element#p has “inherited” its value from its
child, theBLOCKQUOTEelement#q1.

To capture the directionality of inheritance we useread-
only annotations [3] on variables that represent inherited at-
tributes. Intuitively, a read-only variablev in a constraintc
means thatc should not be considered until the constraints
involving v as an ordinary variable (i.e., not read-only) have
been used to computev’s value.

To model inheritance, we need to add the inheritance equali-
ties with constraint importance ofWEAK, and mark the vari-
able corresponding to the parent’s property as read-only. The
read-only annotation ensures that the constraints are solved
in an order corresponding to a top-down traversal of the doc-
ument tree. Thus, the above example modifies the constraints
in Figure 9 so that each font size variable on the right hand
side has a read-only annotation.

Extending CSS 2.0
We have seen how we can use hierarchical constraints to pro-
vide a declarative specification for CSS 2.0. There is, how-
ever, another advantage in viewing CSS 2.0 in this light. The
constraint viewpoint suggests a number of natural extensions

that overcome the expressiveness limitations of CSS 2.0 dis-
cussed previously. We call this extension CCSS—Constraint
Cascading Style Sheets.

As the above examples indicate, virtually all author and user
constraints generated from CSS 2.0 either constrain a style
property to take a fixed value, or relate it to the parent’s
style property value. One natural generalization is to allow
more general constraints such as inequalities. Another natu-
ral generalization is to allow the constraint to refer to other
variables—both variables corresponding to non-parent ele-
ments and to “global” variables.

In CCSS, we allow constraints in the declaration of a style
sheet rule. The CSS-styleattribute:value pair is re-
interpreted in this context as the constraintattribute =
value . We prepend all constraint rules with theconstraint
pseudo-property so that CCSS is backwards compatible with
browsers supporting only CSS. In a style sheet rule, the con-
straint can refer to attributes ofparent andleft-sibling .
For example:

P { constraint:
font-size <=

(parent[parent])[font-size] + 2 }

is a rule that applies constraints that relate the font-size of a
paragraph element to the font-size of its grandparent element.

CCSS style sheets also allow the author to introduce global
constrainable variables using a new@variable directive.
A variable identifier is lexically the same as a CSSID at-
tribute. The author can express constraints among global
constrainable variables and element style properties using a
new@constraint directive. There are also various global
built-in objects (e.g.,Browser ) with their own attributes that
can be used.

These extensions add considerable expressive power. For in-
stance it is now simple to specify that all tables in the docu-
ment have the same width, and that this is the smallest width
that allows all tables to have a reasonable layout:

@variable table-width;
TABLE { constraint: width = table-width }

Similarly we can specify two columnsc1 andc2 in the same
(or different) tables have the same width (the smallest for
reasonably laying out both):

@constraint #c1[width] = #c2[width];

It also allows the designer to express preferences in case the
desired font is not available. For example adding

H1 { constraint: font-size >= 13pt }
P { constraint: font-size >= 11pt }

to simple.css (Figure 2) will ensure that larger fonts are
used if 13 pt and 11 pt fonts are not available.

Finally, a sight-impaired user can express the strong desire to
have all font sizes greater than 12 pt:



* {constraint: font-size >= 12pt !important}

As long as the font size of an element is 12 pt or larger it will
not be changed, but smaller fonts will be enlarged.

Note that the style sheet author is not allowed to explicitly
specify a constraint to beREQUIREDas this would admit the
possibility of an unsatisfiable constraint system. Instead,RE-
QUIRED constraints are generated implicitly for capturing re-
lationships inherent in the structure of the layout, such as a
table’s width being the sum of the widths of its columns.

Providing inequality constraints allows the author to con-
trol the document appearance more precisely in the context
of browser capabilities and user preferences. Additionally,
CCSS allows the author to give alternate style sheets for the
same target media. Each style sheet can list preconditions
for their applicability using a new@precondition direc-
tive. For efficiency, the precondition can only refer to vari-
ous pre-defined variables. The values of these variables will
be known (i.e. they will have specific values) at the time the
precondition is tested. For example:

@precondition Browser[frame-width] >= 800px;
@precondition ColorMonitor = True;

We extend the style sheet@import directive to permit listing
multiple style sheets per line, and the first applicable sheet is
used (the others are ignored). If no style sheet’s precondi-
tions hold, none are imported. Consider the example direc-
tive

@import "wide.css", "tall.css", "small.css";

If wide.css ’s preconditions fail, buttall.css ’s succeed,
the layout usestall.css . If, through the course of the user
resizing the top-level browser frame,wide.css ’s precondi-
tions later become satisfied, the layout does not switch to that
style sheet unlesstall.css ’s preconditions are no longer
satisfied. That is, the choice among style sheets listed with
one directive is only revisited when a currently-used style
sheet is no longer applicable.

As an example, consider a style sheet for text with pictures.
If the page is wide, the images should appear to the right of
the text; if it is narrow, they should appear without text to the
left; and if it is too small, the images should not appear at all.
This can be encoded as:

/* wide.css */
@precondition Browser[frame-width] > 550px;
IMG { float: right}

/* tall.css */
@precondition Browser[frame-width] <= 600px;
@precondition Browser[frame-height] > 550px;
IMG { clear: both; float: none}

/* small.css */
IMG { display: none }

Preconditions become even more expressive in the presence
of support for CSS positioning [10] and a generalizedflow

property [7].

IMPLEMENTATION
Prototype Web Browser
We have implemented a representative subset of CCSS to
demonstrate the additional expressiveness it provides to web
designers. Our prototype is based on version 1.4a of Amaya
[8], the W3 Consortium’s browser. Amaya is built on top of
Thot, a structured document editor, and has partial support
for CSS1. Amaya is exceptionally easy to extend in some
ways (e.g., adding new HTML tags), and provides a stable
base from which to build.

Our support for constraints in Amaya covers the two main
domains for constraints that we have discussed: table widths
(for illustrating page layout relationships) and font sizes (for
illustrating the solution of systems involving inherited at-
tributes). In our prototype, HTML and CSS statements can
contain constraints and declare constrainable variables. In
HTML statements, constrainable variables, in addition to
specific values, can be attached by name to element attributes
(e.g., to the “width” of a table column). When the constraints
of the document force the values assigned to variables to
change, the browser updates its rendering of the current page,
much as it does when the browser window is resized (which
often caused the re-solve in the first place).

We have also extended Amaya to support preconditions on
style sheets and the generalized “@import ” CCSS rule. The
performance when switching among style sheets is similar to
a reload, and when the style sheets are cached on disk, per-
formance is good even when switching style sheets during an
interactive resize. (It may be useful to provide background
pre-fetching of alternate style-sheets to avoid latency when
they are first needed.) See Figure 10 for screen shots of an ex-
ample using our prototype’s support for both table layout and
preconditions. As the support for CSS improves in browsers,
more significant variations will be possible through the use
of our@precondition and extended@import directives.

We compared the performance of our prototype browser to
an unmodified version of Amaya 1.4a, both fully optimized,
running on a PII/400 displaying across a 10Mbit network to a
Tektronix X11 server on the same subnet. Our test case was
a small example on local disk using seven style sheets. We
executed 100 re-loads, and measured the total wall time con-
sumed. The unmodified browser performed each re-load and
re-render in 190 ms, while our prototype took only 250 ms
even when sized to select the last alternative style sheet in
each of three@import directives. This performance penalty
is reasonable given the added expressiveness and features the
prototype provides.

One of the most important benefits of re-framing CSS as con-



Figure 10: Screen shots of our prototype browser. In the view on the left, a narrow style sheet is in effect because
the browser width ≤ 800 pixels, while on the right a wide style sheet is used. Interactively changing the browser width
dynamically switches between these two presentations. In both figures, the first column is 1

4 the width of the second
column, which is twice the width of the last column. On the left, the table consumes 100% of the frame width, but on the
right, the table width is the browser width minus 200 pixels. Also notice the changes in font size and text alignment.

straints is that it provides an implementation approach for
even the standard CSS features. To simplify our prototype
and ensure it remains a superset of CSS functionality, we
currently do not treat old-style declarations as constraints,
but instead rely on the existing implementation’s handling of
those rules. However, if designed into a browser from the
beginning, treating all CSS rules as syntactic sugar for un-
derlying constraints will result in large savings in code and
complexity. The cascading rules would be completely re-
placed by the constraint solver’s more principled assignment
of values to variables, and the display engine need only use
those provided values, and redraw when the solver changes
the current solution.

Constraint Solving Algorithms
While the semantics of the constraints is independent of the
algorithms used to satisfy them, for interactive applications
such as a web browser, we nevertheless must select an al-
gorithm that is capable of efficiently finding solutions to the
constraints at interactive speeds. Our implementation uses
two algorithms: Cassowary [4] and a restricted version of
BAFSS [12].

The Cassowary algorithm handles linear arithmetic equality
and inequality constraints. The collection of constraints may
include cycles (i.e. simultaneous equalities and inequalities
or redundant constraints) and conflicting preferences. Cas-
sowary is an incremental version of the simplex algorithm, a
well-known and heavily studied technique for finding a so-
lution to a collection of linear equality and inequality con-
straints that minimizes the value of a linear expression called
the objective function. However, commonly available im-
plementations of the simplex algorithm are not suitable for
interactive applications such as a web browser.

Cassowary supports the weighted-sum-better comparator [3]

for choosing a single solution from among those that sat-
isfy all the required constraints. As mentioned earlier, this
comparator computes the error for a solution by summing
the product of the strength tuple and the error for each con-
straint that is unsatisfied. To model the CSS importance
rules in a hierarchy of constraint strengths, we encode the
symbolic levels of importance as tuples as well; for exam-
ple, USER-IMPORTANT is 〈1, 0, 0, 0, 0, 0〉 and BROWSERis
〈0, 0, 0, 0, 1, 0〉. Thus, no matter what scalar error aBROWSER

constraint has, it will never be satisfied if doing so would
force aUSER-IMPORTANT constraint to not be satisfied. Sim-
ilarly the last three components of the strength tuple are en-
coded as〈10i, 10c, 10t〉.5 Since the Cassowary toolkit oper-
ates on constraints with strengths that are a singlen-tuple, we
internally use 9-tuples to represent strengths—for example,

〈1, 0, 0, 0, 0, 0, 100, 101, 100〉

is the strength of a user-specified!important constraint
whose selector only contains a single class name.

BAFSS uses a dynamic programming approach to handle
systems of font constraints which are binary (i.e., a constraint
with two variables) and for which the associated constraint
graph is acyclic. For the font constraints implied by CSS,
we are able to simplify the algorithm because all of the con-
straints relate a read-only size attribute in the parent element
to the size attribute of a child element. Given this additional
restriction that all constraints are one-way, the algorithm is

5This does not exactly match the CSS specificity rules. For example if
the error in a constraint with strength〈WEAK, 0, 0, 1〉 is 10 times greater
than the error in a conflicting constraint with strength〈WEAK, 0, 0, 2〉, the
first constraint will affect the final solution. By choosing appropriate error
functions we can make this unlikely to occur in practice. However, the more
general constraint hierarchy support may actually permit more desirable in-
teractions rather than the strict strength ordering imposed by CSS.



simple: visit the variable nodes in topological order and as-
sign each a value that greedily minimizes the error contribu-
tion from that variable.

Both constraint solvers are implemented within the Casso-
wary Constraint Solving library [1].

RELATED WORK
The most closely related research is our earlier work on the
use of constraints for web page layout [5]. This system al-
lowed the web page author to construct a document com-
posed of graphic objects and text. The layout of these ob-
jects and the text font size were described in a separate “lay-
out sheet” using linear arithmetic constraints and finite do-
main constraints. Like CCSS, layout sheets had precondi-
tions, controlling their applicability.

The work reported here, which focuses on how to combine
constraint-based layout with CSS, is complementary to our
previous research. One of the major technical contributions
here is to provide a declarative semantics for CSS based on
hierarchical constraints; this issue was not addressed in our
prior work [5]. There are two fundamental differences be-
tween layout sheets and CCSS. Layout sheets are not style
sheets in the sense of CSS since they can only be used with a
single document. Constraints only apply to named elements,
and there is no concept of a style rule that applies to multiple
elements—the constraints that are used are exactly the con-
straints that the author has specified. The other fundamental
difference between the earlier work [5] and CCSS is that the
former has no analogue of the document tree. In essence, the
document is modeled as a flat collection of objects; there is
no notion of inheritance, and nearly all layout must be ex-
plicitly detailed in the layout sheet.

Cascading Style Sheets are not the only kind of style sheet.
The Document Style Semantics and Specification Language
(DSSSL) is an ISO standard for specifying the format of
SGML documents. DSSSL is based on Scheme, and pro-
vides both a transformation language and a style language.
It is very powerful but complex to use. More recently, W3C
has begun designing the XSL style sheet for use with XML
documents. XSL is similar in spirit to DSSSL. PSL [13] is
another style sheet language; its expressiveness lies midway
between that of CSS and XSL. The underlying application
model for all three is the same: take the document tree of
the original document and apply transformation rules from
the style sheet in order to obtain the presentation view of the
document, which is then displayable by the viewing device.
In the case of XSL, the usual presentation view is an HTML
document whose elements are annotated with style proper-
ties.

None of these other style sheet languages allow true con-
straints. Extending any of them to incorporate constraints
would offer many of the same benefits as it does for CSS,
namely, the ability to flexibly combine user, browser, and

designer desires and requirements, and a simple powerful
model for layout of complex objects, such as tables. The
simplest extension is to allow constraints in the presentation
view of the document. (Providing constraints in the transfor-
mation rules would seem to offer little advantage.) In the case
of DSSSL a natural way to do this is to embed a constraint
solver into Scheme (as in SCWM [2]). In the case of XSL,
since HTML is often used as the targeted visual rendering
language, the simplest change is to augment that language to
be HTML with CCSS style properties. Then the XSL trans-
lator would simply generate HTML and a CCSS style sheet,
with a CCSS-enhanced browser still performing the dynamic
constraint solving, rendering, and interaction.

Regarding other user interface applications of constraints,
there is a long history of using constraints in interfaces and
interactive systems, beginning with Ivan Sutherland’s pio-
neering Sketchpad system [17]. Constraints have also been
used in several other layout applications. IDEAL [18] is an
early system specifically designed for page layout applica-
tions. Harada, Witkin, and Baraff [11] describe the use of
physically-based modeling for a variety of interactive mod-
eling tasks, including page layout. There are numerous sys-
tems that use constraints for widget layout [15, 16], while
Badros [2] uses constraints for window layout.

CONCLUSIONS AND FUTURE WORK

We have demonstrated that hierarchical constraints provide a
unifying, declarative semantics for CSS 2.0 and also suggest
a simplifying implementation strategy. Furthermore, view-
ing CSS from the constraint perspective suggests several nat-
ural extensions. We call the resulting extension CCSS—
Constraint Cascading Style Sheets. By allowing true con-
straints and style sheet preconditions, CCSS increases the
expressiveness of CSS 2.0 and, importantly, allows the de-
signer to write style sheets that combine more flexibly and
predictably with user preferences and browser restrictions.
We have demonstrated the feasibility of CCSS by modifying
the Amaya browser. However, substantial work remains to
develop an industrial-strength browser supporting full CCSS,
in part because of Amaya’s lack of support for CSS 2.0. A
more complete implementation will be especially useful for
investigating the important issue of how well the constraint
systems and solver scale to larger, more complicated designs
that further exploit our constraint extensions.

Apart from improving the current implementation, we have
two principal directions for further extensions to CCSS. The
first is to increase the generality and solving capabilities
of the underlying solver. For example, style sheet authors
should be able to arbitrarily annotate variables as read-only
so that they have greater control over the interactions of
global variables. Additionally, virtually all CSS properties,
such as color and font weight, could be exposed to the con-
straint solver once we integrate other algorithms into our
solving toolkit.



The second extension is to allow “predicate” selectors in
style sheet rules. These selectors would permit an arbitrary
predicate to be tested in determining the applicability of a
rule to an element in the document structure tree. Predicate
selectors can be viewed as a generalization of the existing
selectors; anH1 P selector is applied only to nodesn for
which the predicate “n[type] = P and∃m parent-ofn such
that m[type] = H1” holds. These predicate selectors would
allow the designer to take into account the attributes of the
selected element’s parents and children, thus, for instance,
allowing the number of items in a list to affect the appear-
ance of the list (as in an example used to motivate PSL [13]).

A final important area for future work is the design, imple-
mentation, and user testing of graphical interfaces for writ-
ing and debugging constraint cascading style sheets and web
pages that use them.

ACKNOWLEDGMENTS
We thank Bert Bos and H˚akon Lie of the CSS group of the
W3 Consortium for early feedback on these ideas and our
proposed extensions to CSS. This research has been funded
in part by a US National Science Foundation Graduate Fel-
lowship for Greg Badros and by NSF Grant No. IIS-9975990,
and in part by a grant from the Australian Research Council.

REFERENCES
1. G. Badros and A. Borning. The Cassowary linear arith-

metic constraint solving algorithm: Interface and im-
plementation. Technical Report UW-CSE-98-06-04,
University of Washington, Seattle, Washington, June
1998.

2. G. Badros and M. Stachowiak. Scwm—The Scheme
Constraints Window Manager. Web page, 1997–1999.
http://scwm.mit.edu/.

3. A. Borning, B. Freeman-Benson, and M. Wilson. Con-
straint hierarchies.Lisp and Symbolic Computation,
5(3):223–270, September 1992.

4. A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solv-
ing linear arithmetic constraints for user interface appli-
cations. InProceedings of the 10th ACM Symposium on
User Interface Software and Technology, pages 87–96,
1997.

5. A. Borning, R. Lin, and K. Marriott. Constraints for the
web. InProceedings of 1997 ACM Multimedia Confer-
ence, pages 173–182, 1997.

6. B. Bos, H. Lie, C. Lilley, and I. Jacobs. Cascading style
sheets, level 2. W3C Working Draft, January 1998.
http://www.w3.org/TR/WD-css2/.

7. B. Bos, D. Raggett, and H. Lie. Frame-based layout via
style sheets. W3C Working Draft. http://www.w3.org/
TR/WD-layout.

8. W3 Consortium. Amaya web browser software. Web
page, October 1998. http://www.w3.org/Amaya.

9. W3 Consortium. HTML 4.0 specification. Technical
report, W3 Consortium, 1998. http://www.w3.org/TR/
REC-html40.

10. S. Furman and S. Isaacs. Positioning HTML elements
with cascading style sheets. W3C Working Draft.
http://www.w3.org/TR/WD-positioning.

11. M. Harada, A. Witkin, and D. Baraff. Interactive
physically-based manipulation of discrete/continuous
models. InSIGGRAPH ’95 Conference Proceedings,
pages 199–208, Los Angeles, August 1995. ACM.

12. R. Lin, K. Marriott, and P. Stuckey. Flexible font-size
specification in Web documents. InProceedings of the
22 Australasian Computer Science Conference, Auck-
land, New Zealand, January 1999. Springer-Verlag.

13. P. Marden, Jr. and E. Munson. PSL: An alternate ap-
proach to style sheet languages for the world wide web.
Journal of Universal Computer Science, 4(10), 1998.
http://www.cs.uwm.edu/˜ multimedia.

14. K. Marriott and P. Stuckey.Programming with Con-
straints: An Introduction. The MIT Press, 1998.

15. B. Myers, D. Giuse, R. Dannenberg, B. Vander Zanden,
D. Kosbie, E. Pervin, A. Mickish, and P. Marchal. Gar-
net: Comprehensive support for graphical highly in-
teractive user interfaces.IEEE Computer, November
1990.

16. B. Myers, R. McDaniel, R. Miller, A. Ferrency,
A. Faulring, B. Kyle, A. Mickish, A. Klimovitski, and
P. Doane. The Amulet environment: New models for
effective user interface software development.IEEE
Transactions on Software Engineering, 23(6):347–365,
June 1997.

17. I. Sutherland. Sketchpad: A man-machine graphical
communication system. InProceedings of the Spring
Joint Computer Conference, pages 329–346. IFIPS,
1963.

18. C. van Wyk. A high-level language for specifying pic-
tures. ACM Transactions on Graphics, 1(2):163–182,
April 1982.


