Constraint Cascading Style Sheets for the Web

Greg J. Badros Alan Borning
Dept. of Computer Science and Engineering Dept. of Computer Science and Engineering
University of Washington, Box 352350 University of Washington, Box 352350
Seattle, WA 98195-2350, USA Seattle, WA 98195-2350, USA
gjb@cs.washington.edu borning@cs.washington.edu
Kim Marriott Peter Stuckey
School of Computer Science and Software Engineerilept. of Computer Science and Software Engineering
Monash University University of Melbourne
Clayton, Victoria 3168, Australia Parkville, Victoria 3052, Australia
marriott@cs.monash.edu.au pjs@cs.mu.oz.au
ABSTRACT compromise. The web document proper should contain the

Cascading Style Sheets have been introduced by the W3C asontent and structural tags, together with a link to one or
a mechanism for controlling the appearance of HTML docu- more style sheets that determine how the document will be
ments. In this paper, we demonstrate how constraints providedisplayed. Thus, there is a clean separation between doc-
a powerful unifying formalism for declaratively understand- ument structure and appearance, yet the designer has con-
ing and specifying style sheets for web documents. With con-siderable control over the final appearance of the document.
straints we can naturally and declaratively specify complex W3C has introduce€ascading Style Sheefirst CSS 1.0
behaviour such as inheritance of properties and cascading ofind now CSS 2.0, for use with HTML documents.

conflicting style rules. We give a detailed description of a) ,)
constraint-based style sheet model, CCSS, which is compat-DeSp'te the clear benefits of cascading style sheets, there are

ible with virtually all of the CSS 2.0 specification. It allows several areas in which the CSS 2.0 standard can be improved.
more flexible specification of layout, and also allows the de- e The designer lacks control over the document'’s appearance
signer to provide multiple layouts that better meet the desires in environments different from her own. For example, if
of the user and environmental restrictions. We also describe a the document is displayed on a monochrome display, if
prototype extension of the Amaya browser that demonstrates fonts are not available, or if the browser window is sized
the feasibility of CCSS. differently, then the document’s appearance will often be
] less than satisfactory.

KEYWORDS: Constraints, HTML, style sheets, CSS, Cas- 4 css 2.0 has seemingly ad hoc restrictions on layout spec-
cading Style Sheets, CCSS, World Wide Web, page layout, jfication. For example, a document element’s appearance
Cassowary can often be specified relative to the parent of the element,
INTRODUCTION but generally not relative to other elements in the docu-
Since the inception of the Web there has been tension be- ment. T .
tween the “structuralists” and the “designers.” On one hand,. The .CSS 2.0 specification |s.co.mplex and sometimes vague.

. . ' Itrelies on procedural descriptions to understand the effect
structuralists believe that a Web document should consist

. L . of complex language features, such as table layout. This
only of the content itself and tags indicating the logical struc- o er ;
. . makes it difficult to understand how features interact.
ture of the document, with the browser free to determine the e)
, : e Browser supportfor CSS 2.0 is still limited. We conjecture
document’s appearance. On the other hand, designers (un-

. that this is due in part to the complexity of the specifica-
derstandably) want to spe_:mfy the exact appearance of the tion, but also because the specification does not suggest a
document rather than leaving it to the browser.

unifying implementation mechanism.

With the recent championing aityle sheetby the World- e argue that constraint-based layout provides a solution to

Wide-Web Consortium (W3C), this debate has resulted in aa|| of these issues, because constraints can be used to specify
declarativelythe desired layout of a web document. They
allow partial specification of the layout, which can be com-
bined with other partial specifications in a predictable way.
They also provide a uniform mechanism for understanding
layout and cascading. Finally, constraint solving technology
provides a unifying implementation technique.

We describe a constraint-based extension to CSS 2.0, calle§TML> <HEAD>

. - . <TITLE>Simple Example</TITLE>
Constraint Cascading Style Sheé@®CSS). The extension u "

. <LINK REL="stylesheet

allows the designer to add arbitrary linear arithmetic con- HREF="simple.css"
straints to the style sheet to control features such as object TYPE="text/css"> </HEAD>
placement, and finite-domain constraints to control features <«gopy>
such as font properties. Constraints may be given a strength, <H1 ID=h>Famous Quotes</H1>

reflecting their relative importance. They may be used in <P ID=p> At a party at Blenheim Palace,

style rules in which case rewritings of the constraint are cre- Lady Astor said to

ated for each applicable element. Multiple style sheets are Winston Churchill:
available for the same mediatype (e.g., paper vs. screen) with ~ <BLOCKQUOTE ID=q1>
preconditions on the style sheets determining which are ap- ~ 'f | were married to you, I'd put

poison in your coffee. And he responded:

propriate for a particular environment and user requirements. <BLOCKQUOTE ID=q2>

Our main technical contributions are: If you were my wife, I'd drink it
_ . _ _ </BLOCKQUOTE>
e A demonstration that constraints provide a powerful uni- </BLOCKQUOTE>
fying formalism for declaratively understanding and spec- </p>
ifying CSS 2.0. </BODY>

e A detailed description of a constraint-based style sheet</HTML>
model, CCSS, which is compatible with virtually all of
the CSS 2.0 specification. CCSS is a true extension of Figure 1: Example HTML Document
CSS 2.0. It allows more flexible specification of layout,
and also allows the designer to provide multiple layouts
that better meet the desires of the user and environmentaPe either absolute or relative to the parent element’s value.
restrictions.
e A prototype extension of the Amaya browser that demon-
strates the feasibility of CCSS. The prototype makes use H1 { font-size: 13pt }
of the sophisticated constraint solving algorithm Casso- P { font-size: 11pt }
wary [4] and a simple one-way binary acyclic finite-domain BLOCKQUOTE { font-size: 90% }
solver based on BAFSS [12].

For instance, the style sheet

Figure 2: simple.css
BACKGROUND

Cascading Style Sheet€SS 1.0 in 1997 and CSS 2.0 in has three rules. The first uses the selettbio indicate that
1998) were introduced by the W3C in association with the it applies to all elements with tagl and specifies that those
HTML 4.0 standard. In this section we review relevant as- first-level headings should be displayed using a 13 pt font.
pects of CSS 2.0 [6] and HTML 4.0 [9]. The second rule specifies that paragraph elements should use
an 11 pt font. The third rule specifies the appearance of
text in aBLOCKQUOTEspecifying that the font-size should

Pe 90% of that of the surrounding element.

CSS 2.0 and HTML 4.0 provide a comprehensive set of
“style” properties for each type of HTML tag. By setting
the value of these properties the document author can contro
how the browser will display each element. Broadly speak- We can use this style sheet to specify the appearance of the
ing, properties either specify how to position the element HTML document shown in Figure 1. Notice the link to the

relative to other elements, e.gxt-indent , margin , or style sheet and that we have includedianattribute for all
float , or how to display the element itself, efgnt-size elements since we will refer to them lafer.
or color

Selectors come in three main flavorgipe attribute and
Although the author can directly annotate elements in the contextual These may be combined to give more complex
document with style properties, CSS encourages the authoselectors. We have already seen examples of a type selector
to place this information in a separate style sheet and thenin which the document elements are selected by giving the
link or import that file. Thus, the same document may be “type” of their tag. For example, the type-seleckdr refers
displayed using different style sheets and the same style sheeb all first-level heading elements. The wildcard type],*
may be used for multiple documents, easing maintenance oimatches all tags.

a uniform look for a web site.)
Attribute selectors choose elements based on the values of

A style sheet consists afiles A rule has aselectorthat two attributes that each element in the document tree may
specmes the document elements to which the rule applles, IMarking all elements withD attributes defeats the modularity and re-

and deCIaratiQnSt_hat specify the stylistic e_ffeCt of the rule. yse benefits of CSS; we over-usk tags here strictly as an aid to discussing
The declaration is a set gfopertyvaluepairs. Values may our examples.

HTM. <HTML> <HEAD>
/ \ <TITLE>Table Example</TITLE>
<LINK REL="stylesheet"

HEAD BODY HREF="table.css"
/ \ / TYPE="text/css"> </HEAD>
TITLE LINK HL P <BODY>
‘ <TABLE ID=t>
<COL ID=cl CLASS=medcol>
BLOCKQUATE <COL ID=c2>
‘ <COL ID=c3 CLASS=thincol>
BLOCKQUOTE <TR>
<TD COLSPAN=2>
Figure 3: Document tree for the HTML of Figure 1. </TD>
<TD></TD>
</TR>
optionally provide:CLASSandID . Multiple elements may <TR>
specify the sameLASSvalue, while theD value should be <TD>Textl</TD>
unique. <TD>Text2</TD>
<TD>Text3</TD>
Selection based on tli ASSandID attributes provides con- </TR>

siderable power. By usingLASSattributes and selectors, the ~ </TABLE>

author can categorize various document elements into groups </BODY>

and then apply different formatting to each of the groups. <HTML>

Similarly, by usingD attributes and selectors, the author can

single out document elements for special formatting and then Figure 4: Example HTML Document
refer to them from the style sheet. Elements with a specific

class value are selected using the syntaoldss, while in- parent tables, respectively. (Note the use of the class selector

stance ids are selected withid”. “ " syntax).

Contextual selectors allow the author to take into account —
h he el in the d . .medcol { width: 30% }
where the element occurs in the document, i.e. its context. ..ol { width: 20% }
They are based on the documeritccument tregwhich cap-
tures the recursive structure of the tagged elements. A con-
text selector allows selection based on the element’s ances-

tors in the document tree.

Figure 5: table.css

One of the key features of CSS is that it allows multiple style
For instance, the preceding document has the document tregheets for the same document. Thus a document might be
shown in Figure 3. If we want to ensure the innermost block displayed in the context of the author’s special style sheet for
quote does not have its size reduced relative to its parent, wehat document, a default company style sheet, the user’s style
could use sheet and the browser's default style sheet. This is handled
in CSS bycascadinghe style sheets, permitting each of the

BLOCKQUOTE BLOCKQUOTE { font-size: 100% } sheets to affect the final rendering.

Less generally, we could individually override the font size Cascading, inheritance, and multiple style sheet rules match-

for the secondLOCKQUOTHY using a rule with anD se- ing the same element may mean that there are conflicts among

lector: the rules as to what value a particular style property for that
element should take. The exact details of which value is cho-

#Q2 { font-size: 100% } sen are complex. Within the same style sheet, inheritance is

weakest, and rules with more specific selectors are preferred
Many style properties are inherited by default from the el- to those with less specific selectors. For instance, each of the
ement’s parent in the document tree. Generally speakingrules
properties that control the appearance of the element itself,

such asont-size , are inherited, while those that control Z(I?(ZDC{K]COBZS%TEG:B}_?&}UOTE rsine: 1000
its positioning are not. Q Q { font-size: 6 }

As another example, consider the HTML document shown in is more specific than
Figure 4. We can use a style sheet to control the'width of theg ocKQUOTE { font-size: 90% }

columns in the table. For examplaple.css (Figure 5)

contains rules specifying that the elements of the classesAmong style sheets, the values set by the designer are pre-
medcol andthincol have widths 30% and 20% of their ferred to those of the user and browser, and for otherwise

equal conflicting rules, those in a style sheet that is importedconflict. To allow for this we use theonstraint hierarchy

or linked first have priority over those subsequently imported formalism [3]. A constraint hierarchy consists of a collec-
or linked. However, a style sheet author may also annotatetion of constraints, each labeled with a strength. There is a
rules with the strengttimportant , which will override this distinguished strength labele=QUIRED: such constraints

behavior. In CSS 2.0, for rules designated with stretigth must be satisfied. The other strengths denote preferences.
portant , user-specified rules take priority over designer- There can be an arbitrary number of such strengths, and con-
specified rules. straints with stronger strengths are satisfied in preference to

ones with weaker strengths. Given a system of constraints,
the constraint solver must find a solution to the variables that

One Ilmlta'uc?n is that a style property may only be relative 10 gayisfies the required constraints exactly, and that satisfies the
the element’s parent, not to other elements in the docume”tpreferred constraints as well as possible, giving priority to

This can resultin clumsy specifications, and makes some reaz, ose more strongly preferred. The choice of solution de-
sonable layout constraints impossible to express. For €XaMyands on the comparator function used to measure how well
ple, itis not possible to require that all tables in a document 5 ¢gnstraint is satisfied. In our examples we shall assume the
have the same width, and that this should be the smalles{qjghted-sum-bettaromparator that sums the errors in sat-
width that allows all tables to have reasonable layout. With isfying each of the constraints, weighting each error by the

CSS 2.0, one can only give the tables the same fixed size Ogyrengih of that constraint. By using an appropriate set of
the same fixed percentage width of their parent element. strength labels we can model the behavior of CSS 2.0.

Despite its power, CSS 2.0 still has a number of limitations.

The other main limitation is that it is difficult for the designer 5 cgnstraint View of CSS 2.0

to write style sheets that degrade gracefully in the presenceierarchical constraints provide a simple, unifying way of

of unexpected browser and user limitations and desires. Forunderstanding much of the CSS 2.0 specification. This view-
instance, the author has little control over what happens ifpoint also suggests that constraint solvers provide a natu-
the desired fonts sizes are not available. Consider the stylg) implementation technique. Each style property and the
sheesimple.css again. Imagine thatonly 10 pt, 12 pt,and pjacement of each element in the document can be mod-
14 pt fonts are available. The browser is free to use 12 ptandg|eq py a variable. Constraints on these variables arise from
10 pt for headings and paragraphs respectively, or 14 pt and,q\yser capabilities, default layout behavior arising from the

12 pt, or even 12 pt and 12 pt. Part of the problem is that yy e of the element, from the document tree structure, and
rules always give definite values to style properties. When ¢om the application of style rules. The final appearance of

different style sheets are combined only one rule can be useqhe document is determined by finding a solution to these
to compute the value. Thus a rule is either on or off, leading nstraints.

to discontinuous behavior when style sheets from the author

and user are combined. For instance, a sight-impaired usef he first aspect of CSS 2.0 we consider is the placement of
might specify that all font sizes must be greater than 11 pt. the document elements (i.e., page layout). This can be mod-
However, if the designer has chosen sufficiently large fonts, eled using linear arithmetic constraints. To illustrate this, we
the user wishes to use the designer’s size. This is impossibleexamine table layout—one of the most complex parts of CSS

in CSS 2.0. 2.0. The key difficulty in table layout is that it involves infor-
mation flowing bottom-up (e.g. from elements to columns)
CONSTRAINT CASCADING STYLE SHEETS and top-down (e.g. from table to columns). The CSS 2.0

Our solution to these problems is to use constraints for SPeCpecification is procedural in nature, detailing how this oc-
ifying layout. A constraint is simply a statement of a rela- ¢yrs. By using constraints, we can declaratively specify what
tion (in the mathematical sense) that we would like to have the prowser should do, rather than how to do it. Furthermore,
hold. Constraints have been used for many years in inter-the constraint viewpoint allows a modular specification. For
active graphical applications for such things as specifying example, to understand how a complex nested table should
window and page layout. They allow the designer to specify pe |aid out, we simply collect the constraints for each com-
whatare the desired properties of the system, ratherltioan ponent, and the solution to these is the answer. With a pro-

these properties are to be maintained. The major advantaggedural specification it is much harder to understand such
of using constraints is that they allow partial specification of jhteraction.

the layout, which can be combined with other partial spec- _ .
ifications in a predictable way. In this section, we describe Consider the style sheetble.css (Figure 5) and the as-
our constraint-based extension to CSS 2.0, calledstraint ~ sociated HTML document (Figure 4). The associated layout

Cascading Style ShedBCSS). constraints are shown in Figure 6. The notatjiu[prop
refers to the value of the properpyop for the presentation

One complication in the use of constraints is that they may element corresponding to the document element withil®
Since we are dealing with a table, the system automatically

2This seemingly-inconsistent relative ordering of thieportant
preferences was changed from CSS 1.0 to guarantee that the user has ulti- 3\we use associative array-like syntax for referring to properties of el-
mate control over the appearance of a document. ements to avoid the confusion that the alternatiseléctot form would

(1) #twidth] = #cl|width]+ (1) #th[font-sizd € {9,10, 12, 16,36, 72} REQUIRED
#c2]width] + #c3[width] REQUIRED (2) #plfont-sizg € {9, 10,12, 16,36,72} REQUIRED
(2) #cl|width] > width(“Text1”) REQUIRED (3) #ql[font-sizg € {9,10, 12, 16,36, 72} REQUIRED
(3) #c2|width] > width(“Text2’) REQUIRED (4) #q2[font-sizg € {9,10, 12, 16,36, 72} REQUIRED
(4) #c3|width] > width(“Text3’) REQUIRED (5) #h[font-sizd = 13 DESIGNER
(5) #c3|width] > #i2[width] REQUIRED (6) +#plfont-sizd = 11 DESIGNER
(6) #clwidth] 4+ #c2[width] > #i1[width] REQUIRED (7) #ql[font-sizg = 0.9 * #p[font-sizg DESIGNER
(7) #twidth) =0 WEAK (8) #q2[font-siz§ = 0.9 % #q¢1[font-siz§ =~ DESIGNER
(8) #cllwidth] = 0.3 x #t[width| DESIGNER
(9) #c3|width] = 0.2 « #t[width| DESIGNER Figure 7: Example finite domain constraints

Figure 6: Example layout constraints
#h[font-sizg = 13 (DESIGNER 0, 0, 1)
#plfont-sizd = 11 (DESIGNER 0, 0, 1)
creates a constraint (1) relating the column widths and table #q1[font-sizé = 0.9 * #p[font-sizé (DESIGNERO0, 0, 1)
width.* Similarly, there are automatically created constraints #q2[font-siz§ = 0.9 = #q1[font-siz¢ (DESIGNERO0, 0, 1)
(2-6) that each column is wide enough to hold its content, and ~ #q2[font-sizg = 1.0 « #q1[font-siz§ (DESIGNERO0, 0, 2)
(7) that the table has minimal width. Constraints (8) and (9)
are generated from the style sheet. Notice the different con- Figure 8: Example of overlapping rules
straint strengths: from weakest to strongest theywarak,
DESIGNER and REQUIRED. Since REQUIRED is stronger
than DESIGNER the column will always be big enough to
hold its contents. ThevEAK constraint#t[width] = 0
cannot be satisfied exactly; the effect of minimizing its er-
ror will be to minimize the width of the table, but not at the
expense of any of the other constraints.

Both of the preceding examples have carefully avoided one
of the most complex parts of the CSS 2.0 specification: what
to do when multiple rules assign conflicting values to an el-
ement’s style property. As discussed earlier, there are two
main aspects to this: cascading several style sheets, and con-
flicting rules within the same style sheet.

These constraints provide a declarative specification of WhatWe can model both aspects by means of hierarchical con-

the browsgr should do. This approach also sugggsts an Mgiraints. To do so we need to refine the constraint strengths
plementation strategy: to lay out the table, we simply use

i :) : . . we have been using. Apart froREQUIRED, each strength is
a linear arithmetic constraint solver to find a solution to the

. . .~ alexicographically-ordered tuple
constraints. The solver implicitly takes care of the flow of in- grap y P

formation in both directions, from the fixed widths of the im- (es,i,c,t).
ages upward, and from the fixed width of the browser frame]]] o
downward. The first component in the tuples, is the constraint im-

portanceand captures the author-suggested strength of the
Linear arithmetic constraints are not the only type of con- constraint and its position in the cascade. The constraint
straints implicit in the CSS 2.0 specification. There are also importance is one oWEAK, BROWSER USER, DESIGNER
constraints over properties that can take only a finite num- DESIGNERIMPORTANT, Or USERIMPORTANT (ordered from
ber of different values, including font size, font type, font weakest to strongest). The importaneeak is used for au-
weight, and color. Such constraints are cafieite domain tomatically generated constraints only. The last three com-
constraints and have been widely studied by the constraintponents in the tuple capture the specificity of the rule that
programming community [14]. Typically, they consist of a generated the constraintis the number ofD attributes,c
domain constrainfor each variable giving the set of values is the number o€LASSattributes, and is the number of tag
the variable can take (e.g., the set of font sizes available) anchames in the rule (i.e., the depth of the contextual selection).

required arithmetic constraints over the variables. i) .
As an example, consider the constraints arising from the doc-

As an example, consider the constraints arising from the doc-ument in Figure 1 with the style sheet

ument in Figure 1 and style shesinple.css (Figure 2).)

The corresponding constraints are shown in Figure 7. The H1 { font-size: 13pt }

domain constraints (1-4) reflect the browser’s available fonts. EL{O(EO}E]gEIZO?IiEl:{Lp;O%t-SiZE' 90% }

The remaining constraints result from the style sheet rules. BLOCKQUOTE BLOCKQU.OTE { font-size: 100% }
Note that the third rule generates two constraints (7) and (8), '

one for each block quote element. The constraints and their strengths for those directly gener-

- _ n - ated from the style sheet rules are shown in Figure 8. Be-
cause due to CSS’s pre-existing use of “.” as a class-name prefix in selectors . ! . . .
of rules. cause of its greater weight, the last constraint listed will

“4For simplicity, we ignore margins, borders and padding in this example. dominate the second to last one, giving rise to the expected

that overcome the expressiveness limitations of CSS 2.0 dis-
cussed previously. We call this extension CCSS—Constraint
Cascading Style Sheets.

BODY font-sizé = 12 (BROWSERO0, 0, 0)
#h[font-siz§ = BODY|[font-siz§ (WEAK, 0,0, 0)
#plfont-siz¢ = BODY[font-sizd¢ (WEAK, 0,0, 0)
##q1[font-siz§ = #plfont-siz¢ ~ (WEAK,0,0,0) As the above examples indicate, virtually all author and user
#q2[font-sizg = #qlffont-sizg (WEAK, 0,0, 0) constraints generated from CSS 2.0 either constrain a style
#ql[font-s!ze} =8 (DESIGNER 0,0, 1) property to take a fixed value, or relate it to the parent’s
#q2[font-sizg = 8 (DESIGNER 0,0, 1) o

style property value. One natural generalization is to allow
more general constraints such as inequalities. Another natu-
ral generalization is to allow the constraint to refer to other
variables—both variables corresponding to non-parent ele-
behavior—that the longer contextual selection of a block- ments and to “global” variables.
guote within a blockquote will govern the appearance of
those nested blockquotes.

Figure 9: Example of inheritance rules

In CCSS, we allow constraints in the declaration of a style
sheet rule. The CSS-styktribute:value pair is re-

The remaining issue we must deal with is inheritance of style NterPreted in this context as the constraarttibute =
value . We prepend all constraint rules with ttanstraint

properties SUCh as font S128, and th'e expression Of.th's I.nher’pseudo-property so that CCSS is backwards compatible with
itance within our constraint formalism. For each inherited

. X browsers supporting only CSS. In a style sheet rule, the con-
property, we need to automatically create an appropriate Contraint can refer to attributes pérent andleft-sibling
straint between each element and its parent. At first glance For example:

these should simply b&/EAk equality constraints. Unfor- _
tunately, this does not model the inherent directionality of P { constraint:

inheritance. font-size <= .
(parent[parent])[font-size] + 2 }

For instance, imagine displaying the document in Figure 1. . . .
with the style sheet is a rule that applies constraints that relate the font-size of a

paragraph element to the font-size of its grandparent element.

BLOCKQUOTE { font-size: 8pt } CCSS style sheets also allow the author to introduce global

o . constrainable variables using a n@wariable directive.
where the default font size is 12 pt. The scheme outllnedA variable identifier is lexically the same as a C&S at-

abovilglveg rlhste éo the Eoiltstralr:tst.shciwrshln Flguretg.. Otn.etribute. The author can express constraints among global
possibie weighted-sum-betier solution 1o these constraints 13,5, irainaple variables and element style properties using a
that the heading is in 12 pt and the rest of the document

.) -) new @constraint directive. There are also various global
(including the paragraph) is In 8 Pt- The problem |s'that built-in objects (e.g Browser) with their own attributes that
the paragraph elemedtp has “inherited” its value from its can be used.
child, theBLOCKQUOTElementf#q1.
These extensions add considerable expressive power. For in-

To capture the directionality of inheritance we us®d- stance it is now simple to specify that all tables in the docu-
only annotations [3] on variables that represent inherited at- ment have the same width, and that this is the smallest width
tributes. Intuitively, a read-only variablein a constraint that allows all tables to have a reasonable layout:

means that should not be considered until the constraints
involving v as an ordinary variable (i.e., not read-only) have
been used to computés value.

@variable table-width;
TABLE { constraint: width = table-width }

. . , , . Similarly we can specify two columred andc2 in the same
To model inheritance, we need to add the inheritance equall—(Or different) tables have the same width (the smallest for
ties with constraint importance @fEAk, and mark the vari- reasonably laying out both):

able corresponding to the parent’s property as read-only. The

read-only annotation ensures that the constraints are solve@constraint #c1[width] = #c2[width];

in an order corresponding to a top-down traversal of the doc-

umenttree. Thus, the above example modifies the constraint

in Figure 9 so that each font size variable on the right hand

side has a read-only annotation. H1 { constraint: font-size >= 13pt }
P { constraint: font-size >= 11pt }

dt also allows the designer to express preferences in case the
desired font is not available. For example adding

Extending CSS 2.0
We have seen how we can use hierarchical constraints to prot0 simple.css (Figure 2) will ensure that larger fonts are
vide a declarative specification for CSS 2.0. There is, how- used if 13 ptand 11 pt fonts are not available.

ever, another advantage in viewing CSS 2.0 in this light. The g, 4 sight-impaired user can express the strong desire to
constraint viewpoint suggests a number of natural extensions, ave all font sizes greater than 12 pt:

* {constraint: font-size >= 12pt !important}
Preconditions become even more expressive in the presence

As long as the font size of an elementis 12 pt or larger it will of support for CSS positioning [10] and a generalified
not be changed, but smaller fonts will be enlarged. property [7].

Note that the style sheet author is not allowed to explicitly \nipLEMENTATION
specify a constraint to bREQUIRED as this would admit the
possibility of an unsatisfiable constraint system. Instead,
QUIRED constraints are generated implicitly for capturing re-
lationships inherent in the structure of the layout, such as
table’s width being the sum of the widths of its columns.

Prototype Web Browser

We have implemented a representative subset of CCSS to

demonstrate the additional expressiveness it provides to web
adesigners. Our prototype is based on version 1.4a of Amaya

[8], the W3 Consortium’s browser. Amaya is built on top of
Providing inequality constraints allows the author to con- Thot, a structured document editor, and has partial support
trol the document appearance more precisely in the contexfor CSS1. Amaya is exceptionally easy to extend in some
of browser capabilities and user preferences. Additionally, ways (e.g., adding new HTML tags), and provides a stable
CCSS allows the author to give alternate style sheets for thebase from which to build.
same target media. Each style sheet can list preconditions
for their applicability using a nev@precondition direc- Our support for constraints in Amaya covers the two main
tive. For efficiency, the precondition can only refer to vari- domains for constraints that we have discussed: table widths
ous pre-defined variables. The values of these variables Wi||(for illustrating page layout relationships) and font sizes (for
be known (i.e. they will have specific values) at the time the jjjystrating the solution of systems involving inherited at-
precondition is tested. For example: tributes). In our prototype, HTML and CSS statements can
contain constraints and declare constrainable variables. In
HTML statements, constrainable variables, in addition to
specific values, can be attached by name to element attributes

We extend the style she@timport directive to permit listing (e.g., to the “width” of a table column). When the con_stramts
multiple style sheets per line, and the first applicable sheet isOf the document force the values assigned to variables to
used (the others are ignored). If no style sheet's precondi-change, the browser updates its rendering of the current page,
tions hold, none are imported. Consider the example direc-much as it does when the browser window is resized (which

tive often caused the re-solve in the first place).

@precondition Browser[frame-width] >= 800px;
@precondition ColorMonitor = True;

@import "wide.css", "tall.css", "small.css"; We have also extended Amaya to support preconditions on
style sheets and the generalizeglithport " CCSS rule. The
If wide.css ’s preconditions fail, butall.css 's succeed, performance when switching among style sheets is similar to
the layout usesll.css . If, through the course of the user a reload, and when the style sheets are cached on disk, per-
resizing the top-level browser frameide.css ’s precondi- formance is good even when switching style sheets during an
tions later become satisfied, the layout does not switch to thatinteractive resize. (It may be useful to provide background
style sheet unlessll.css ’s preconditions are no longer pre-fetching of alternate style-sheets to avoid latency when
satisfied. That is, the choice among style sheets listed withthey are first needed.) See Figure 10 for screen shots of an ex-
one directive is only revisited when a currently-used style ample using our prototype’s support for both table layout and
sheet is no longer applicable. preconditions. As the support for CSS improves in browsers,
more significant variations will be possible through the use

As an example, consider a style sheet for text with pictures. of oyr @precondition ~ and extendedimport directives.
If the page is wide, the images should appear to the right of

the text; if it is narrow, they should appear without text to the \we compared the performance of our prototype browser to
left; and if it is too small, the images should not appear at all. an ynmodified version of Amaya 1.4a, both fully optimized,
This can be encoded as: running on a PI1/400 displaying across a 10Mbit network to a
Tektronix X11 server on the same subnet. Our test case was
a small example on local disk using seven style sheets. We
executed 100 re-loads, and measured the total wall time con-
sumed. The unmodified browser performed each re-load and

/* wide.css */
@precondition Browser[frame-width] > 550px;
IMG { float: right}

/* tall.css */ re-render in 190 ms, while our prototype took only 250 ms
@precondition Browser[frame-width] <= 600px; even when sized to select the last alternative style sheet in
@precondition Browser[frame-height] > 550px; each of three@import directives. This performance penalty
IMG { clear: both; float: none} is reasonable given the added expressiveness and features the

prototype provides.
/* small.css */

IMG { display: none } One of the most important benefits of re-framing CSS as con-

2=F table-example.html Formatted_view |Elg| == tavle-example.ntml_Formatted view | =1 =
File Edit Types Links ‘“iews Style Special Help | File Edit Types Links Views Style Special Help
EEREEY EER D e E EEEY EEREEE D EEECEE
A n
2 Stylc Sheet Trac “IlWwWws Style Sheet Track
B raeeeTp # Title Presenter
LRl || eBhikEs (S TRETEs @I 881 55 In Mac IE Tantek Celik
§82 | The Development of the C55 Test Suites | Eric Meyer 852 The Development of the CSS Test Suites Etic Meyer
383 [CSSin Opera Hékon Lie 353 CS55 in Opera Hékon Lie
383 Style Sheets and Document Engineering | Philip Marden 533 Style Sheets and Document Engineering Philip Marden
554 [PSL: A Mew Presentation Language for | Ethan Munson 534 PSL: & Mew Presentation Language for Structured Ethan Munson
Structured Documents Documents
§85 | Constraint Cascading Style Sheets Greg J. Badros B EumsiE EerEEhy) S fips Greg J. Badros
SS6 Style Sheets for Voice Browsers Dave Raggett 536 Style Sheets for Yoice Browsers Dave Raggett
$57 |CS53 Madularization Bert Bos ! ss 8 I N EE3 ERe !
= =
Finished! Finished!

Figure 10: Screen shots of our prototype browser. In the view on the left, a narrow style sheet is in effect because
the browser width < 800 pixels, while on the right a wide style sheet is used. Interactively changing the browser width
dynamically switches between these two presentations. In both figures, the first column is i the width of the second
column, which is twice the width of the last column. On the left, the table consumes 100% of the frame width, but on the
right, the table width is the browser width minus 200 pixels. Also notice the changes in font size and text alignment.

straints is that it provides an implementation approach for for choosing a single solution from among those that sat-
even the standard CSS features. To simplify our prototypeisfy all the required constraints. As mentioned earlier, this
and ensure it remains a superset of CSS functionality, wecomparator computes the error for a solution by summing
currently do not treat old-style declarations as constraints,the product of the strength tuple and the error for each con-
but instead rely on the existing implementation’s handling of straint that is unsatisfied. To model the CSS importance
those rules. However, if designed into a browser from the rules in a hierarchy of constraint strengths, we encode the
beginning, treating all CSS rules as syntactic sugar for un-symbolic levels of importance as tuples as well; for exam-
derlying constraints will result in large savings in code and ple, USERIMPORTANT is (1,0,0,0,0,0) and BROWSERIs
complexity. The cascading rules would be completely re- (0,0, 0,0, 1,0). Thus, no matter what scalar errasROWSER
placed by the constraint solver’s more principled assignmentconstraint has, it will never be satisfied if doing so would
of values to variables, and the display engine need only use€force ausSER-IMPORTANT constraint to not be satisfied. Sim-
those provided values, and redraw when the solver changedarly the last three components of the strength tuple are en-
the current solution. coded ag10?,10¢,10%).5 Since the Cassowary toolkit oper-
ates on constraints with strengths that are a singleple, we

Constraint Solving Algorithms S internally use 9-tuples to represent strengths—for example,
While the semantics of the constraints is independent of the

algorithms used to satisfy them, for interactive applications (1,0,0,0,0,0,10° 10", 10°)

such as a web browser, we nevertheless must select an al-

gorithm that is capable of efficiently finding solutions to the s the strength of a user-specifiéichportant ~ constraint

constraints at interactive speeds. Our implementation usesvhose selector only contains a single class name.

two algorithms: Cassowary [4] and a restricted version of

BAFSS [12]. BAFSS uses a dynamic programming approach to handle
systems of font constraints which are binary (i.e., a constraint

The Cassowary algorithm handles linear arithmetic equality with two variables) and for which the associated constraint

and inequality constraints. The collection of constraints may graph is acyclic. For the font constraints implied by CSS,

include CyC'eS (|e simultaneous equalities and inequalitieswe are able to S|mp||fy the a|gorithm because all of the con-

or redundant constraints) and conflicting preferences. Casstraints relate a read-only size attribute in the parent element

sowary is an incremental version of the simplex algorithm, a to the size attribute of a child element. Given this additional

well-known and heavily studied technique for finding a so- restriction that all constraints are one-way, the algorithm is

lution to a collection of linear equality and inequality con-

straints that minimizes the value of a linear expression called 5This does not exactly match the CSS specificity rules. For example if

the objective function However, Commomy available im- the error in a constraint with strengtfiveak, 0,0, 1) is 10 times greater

| tati fth . | | ith t suitable f than the error in a conflicting constraint with strengtheAk, 0, 0, 2), the
plementations o e simplex algorithm are not suitable Tor o consraint will affect the final solution. By choosing appropriate error

interactive applications such as a web browser. functions we can make this unlikely to occur in practice. However, the more
) general constraint hierarchy support may actually permit more desirable in-
Cassowary supports the weighted-sum-better comparator [3leractions rather than the strict strength ordering imposed by CSS.

simple: visit the variable nodes in topological order and as- designer desires and requirements, and a simple powerful
sign each a value that greedily minimizes the error contribu- model for layout of complex objects, such as tables. The
tion from that variable. simplest extension is to allow constraints in the presentation
)) o view of the document. (Providing constraints in the transfor-
Both constraint solvers are implemented within the Casso-mation rules would seem to offer little advantage.) In the case
wary Constraint Solving library [1]. of DSSSL a natural way to do this is to embed a constraint
solver into Scheme (as inc8vm [2]). In the case of XSL,
RELATED WORK . . since HTML is often used as the targeted visual rendering
The most closgly related research is our earhe.r work on thelanguage, the simplest change is to augment that language to
use of constraints for web page layout [S]. This system al- he ML with CCSS style properties. Then the XSL trans-
lowed the web page author to construct a document cOM-|40r would simply generate HTML and a CCSS style sheet,

posed of graphic objects and text. The layout of these ob-\\ih 5 ccSS-enhanced browser still performing the dynamic
jects and the text font size were described in a separate “lay+qnstraint solving, rendering, and interaction.

out sheet” using linear arithmetic constraints and finite do-

main constraints. Like CCSS, layout sheets had precondi-Regarding other user interface applications of constraints,
tions, controlling their applicability. there is a long history of using constraints in interfaces and
interactive systems, beginning with lvan Sutherland’s pio-
neering Sketchpad system [17]. Constraints have also been
used in several other layout applications. IDEAL [18] is an
early system specifically designed for page layout applica-
ions. Harada, Witkin, and Baraff [11] describe the use of
bhysically—based modeling for a variety of interactive mod-

eling tasks, including page layout. There are numerous sys-
tween I_ayout sheets and CC.S S. Layout sheets are not Sftyl?emg that use cons’?reﬂn?s forywidget layout [15, 16], whilye
sheets in the sense of CSS since they can only be used with Badros [2] uses constraints for window layout.

single document. Constraints only apply to named elements,
and there is no concept of a style rule that applies to muItipIeCOI\ICLUSM\IS AND FUTURE WORK
elements—the constraints that are used are exactly the con-

straints that the author has specified. The other fundamental/Vé Na@ve demonstrated that hierarchical constraints provide a

difference between the earlier work [5] and CCSS is that the Unifying, declarative semantics for CSS 2.0 and also suggest
former has no analogue of the document tree. In essence, th@ SIMPlifying implementation strategy. Furthermore, view-
document is modeled as a flat collection of objects: there is!"d €SS from the constraint perspective suggests several nat-

no notion of inheritance, and nearly all layout must be ex- Ural extensions. We call the resulting extension CCSS—
plicitly detailed in the layout sheet. Constraint Cascading Style Sheets. By allowing true con-

straints and style sheet preconditions, CCSS increases the
Cascading Style Sheets are not the only kind of style sheetexpressiveness of CSS 2.0 and, importantly, allows the de-
The Document Style Semantics and Specification Languagesigner to write style sheets that combine more flexibly and
(DSSSL) is an ISO standard for specifying the format of predictably with user preferences and browser restrictions.
SGML documents. DSSSL is based on Scheme, and proWe have demonstrated the feasibility of CCSS by modifying
vides both a transformation language and a style languagethe Amaya browser. However, substantial work remains to
It is very powerful but complex to use. More recently, W3C develop an industrial-strength browser supporting full CCSS,
has begun designing the XSL style sheet for use with XML in part because of Amaya’s lack of support for CSS 2.0. A
documents. XSL is similar in spirit to DSSSL. PSL [13] is more complete implementation will be especially useful for
another style sheet language; its expressiveness lies midwainvestigating the important issue of how well the constraint
between that of CSS and XSL. The underlying application Systems and solver scale to larger, more complicated designs
model for all three is the same: take the document tree ofthat further exploit our constraint extensions.
the original document and apply transformation rules from _ _) _
the style sheet in order to obtain the presentation view of theAPart from improving the current implementation, we have
document, which is then displayable by the viewing device. WO principal directions for further extensions to CCSS. The
In the case of XSL, the usual presentation view is an HTML first is to increase the generality and solving capabilities

document whose elements are annotated with style proper®f the underlying solver. For example, style sheet authors
ties. should be able to arbitrarily annotate variables as read-only

so that they have greater control over the interactions of
None of these other style sheet languages allow true con-global variables. Additionally, virtually all CSS properties,
straints. Extending any of them to incorporate constraints such as color and font weight, could be exposed to the con-
would offer many of the same benefits as it does for CSS, straint solver once we integrate other algorithms into our
namely, the ability to flexibly combine user, browser, and solving toolkit.

The work reported here, which focuses on how to combine
constraint-based layout with CSS, is complementary to our
previous research. One of the major technical contributions
here is to provide a declarative semantics for CSS based o
hierarchical constraints; this issue was not addressed in ou
prior work [5]. There are two fundamental differences be-

The second extension is to allow “predicate” selectors in 8.

style sheet rules. These selectors would permit an arbitrary
predicate to be tested in determining the applicability of a
rule to an element in the document structure tree. Predicate
selectors can be viewed as a generalization of the existing
selectors; arH1 P selector is applied only to nodes for
which the predicateri[type] = P and3m parent-ofn such
thatm[type] = H1” holds. These predicate selectors would
allow the designer to take into account the attributes of the
selected element’s parents and children, thus, for instance,
allowing the number of items in a list to affect the appear-
ance of the list (as in an example used to motivate PSL [13]).

A final important area for future work is the design, imple-
mentation, and user testing of graphical interfaces for writ-

ing and debugging constraint cascading style sheets and web12.

pages that use them.

ACKNOWLEDGMENTS
We thank Bert Bos and &Kon Lie of the CSS group of the

W3 Consortium for early feedback on these ideas and our 13.

proposed extensions to CSS. This research has been funded
in part by a US National Science Foundation Graduate Fel-
lowship for Greg Badros and by NSF Grant No. 11S-9975990,
and in part by a grant from the Australian Research Council.

REFERENCES
1. G. Badros and A. Borning. The Cassowary linear arith-
metic constraint solving algorithm: Interface and im-
plementation. Technical Report UW-CSE-98-06-04,
University of Washington, Seattle, Washington, June
1998.

2. G. Badros and M. Stachowiak. Scwm—The Scheme
Constraints Window Manager. Web page, 1997-1999.
http://scwm.mit.edul/.

3. A. Borning, B. Freeman-Benson, and M. Wilson. Con-
straint hierarchies.Lisp and Symbolic Computatipn
5(3):223-270, September 1992,

17.

4. A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solv-
ing linear arithmetic constraints for user interface appli-
cations. InProceedings of the 10th ACM Symposium on
User Interface Software and Technolpgages 8796,
1997.

5. A.Borning, R. Lin, and K. Marriott. Constraints for the
web. InProceedings of 1997 ACM Multimedia Confer-
ence pages 173-182, 1997.

6. B.Bos, H. Lie, C. Lilley, and I. Jacobs. Cascading style
sheets, level 2. W3C Working Draft, January 1998.
http://www.w3.0rg/TR/WD-css2/.

7. B. Bos, D. Raggett, and H. Lie. Frame-based layout via
style sheets. W3C Working Draft. http://www.w3.org/
TR/WD-layout.

10.

11.

15.

16.

18.

W3 Consortium. Amaya web browser software. Web
page, October 1998. http://www.w3.0rg/Amaya.

9. W3 Consortium. HTML 4.0 specification. Technical

report, W3 Consortium, 1998. http://www.w3.org/TR/
REC-html40.

S. Furman and S. Isaacs. Positioning HTML elements
with cascading style sheets. W3C Working Dratft.
http://www.w3.0rg/TR/WD-positioning.

M. Harada, A. Witkin, and D. Baraff. Interactive
physically-based manipulation of discrete/continuous
models. InSIGGRAPH '95 Conference Proceedings
pages 199-208, Los Angeles, August 1995. ACM.

R. Lin, K. Marriott, and P. Stuckey. Flexible font-size
specification in Web documents. Rroceedings of the
22 Australasian Computer Science Confererfogck-
land, New Zealand, January 1999. Springer-Verlag.

P. Marden, Jr. and E. Munson. PSL: An alternate ap-
proach to style sheet languages for the world wide web.
Journal of Universal Computer Sciencé(10), 1998.
http://www.cs.uwm.edl/multimedia.

14. K. Marriott and P. StuckeyProgramming with Con-

straints: An Introduction The MIT Press, 1998.

B. Myers, D. Giuse, R. Dannenberg, B. Vander Zanden,
D. Kosbie, E. Pervin, A. Mickish, and P. Marchal. Gar-
net: Comprehensive support for graphical highly in-
teractive user interfaceslEEE Computer November
1990.

B. Myers, R. McDaniel, R. Miller, A. Ferrency,
A. Faulring, B. Kyle, A. Mickish, A. Klimovitski, and

P. Doane. The Amulet environment: New models for
effective user interface software developmehEEE
Transactions on Software Engineerji&$(6):347-365,
June 1997.

I. Sutherland. Sketchpad: A man-machine graphical
communication system. IRroceedings of the Spring
Joint Computer Conferencepages 329-346. IFIPS,
1963.

C. van Wyk. A high-level language for specifying pic-
tures. ACM Transactions on Graphic4(2):163-182,
April 1982.

