
c© Copyright 2000

Gregory Joseph Badros

Extending Interactive Graphical Applications with Constraints

by

Gregory Joseph Badros

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

2000

Program Authorized to Offer Degree: Department of Computer Science and Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Gregory Joseph Badros

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Alan Borning

Reading Committee:

Richard Anderson

Alan Borning

David Notkin

Date:

In presenting this dissertation in partial fulfillment of the requirements for the Doctorial degree

at the University of Washington, I agree that the Library shall make its copies freely available

for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly

purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying

or reproduction of this dissertation may be referred to University Microfilms, 1490 Eisenhower

Place, P.O. Box 975, Ann Arbor, MI 48106, to whom the author has granted “the right to reproduce

and sell (a) copies of the manuscript in microform and/or (b) printed copies of the manuscript made

from microform.”

Signature

Date

University of Washington

Abstract

Extending Interactive Graphical Applications with Constraints

by Gregory Joseph Badros

Chair of the Supervisory Committee

Professor Alan Borning
Computer Science and Engineering

A constraint is a relation that we would like to maintain. Over the last thirty years, a num-

ber of problems have prevented constraints from being widely accepted for use in interactive

graphical applications. The biggest difficulty of applying constraints has been finding the right

tradeoff between performance and expressiveness. To be able to satisfy systems of constraints ef-

ficiently enough for real-time use, interactive applications have restricted the problem to solving

less-expressive sets of constraints. One common such restriction is to require that the constraint

relationships are acyclic, thus enabling simple techniques based on local propagation. Unfortu-

nately, these limitations in expressiveness counteract the benefits that the declarative specification

of relationships with constraints is intended to provide.

A sophisticated new constraint solving toolkit, Cassowary (based on the simplex algorithm), is

presented. It is designed to support especially easy embedding of efficient constraint-solving capa-

bilities in arbitrary interactive graphical applications. To prove its usefulness and refine its capabil-

ities, the Cassowary toolkit was used in three such applications: the Scheme Constraints Window

Manager (SCWM) explores exposing the power of constraints to the end user via a graphical user

interface; Constraint Cascading Style Sheets (CCSS) for the Amaya web browser illustrates how

constraints can be a powerful means of understanding a complex procedural specification and can

provide a unifying implementation mechanism; and Constraint Scalable Vector Graphics (CSVG)

for the CSIRO SVG viewer demonstrates that constraints provide a powerful framework for de-

laying the final layout of diagrammatic illustrations to enable visualizations better adapted to the

viewing environment. Each of these applications benefits from constraint features and maintains

good performance by leveraging Cassowary.

Constraint solving, and in particular the Cassowary constraint solving toolkit, can provide

useful capabilities that are easy to take advantage of. It, and similar technologies, are ready for

more significant and ambitious use in the domain of interactive graphical applications.

TABLE OF CONTENTS

List of Figures vi

List of Tables viii

Glossary ix

Chapter 1: Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

Chapter 2: Background 4

2.1 Introduction .. 4

2.2 Constraint semantics . 4

2.3 Constraints across applications . 6

2.3.1 Drawing . 6

2.3.2 Graph layout .. 10

2.3.3 Visualization . 11

2.3.4 Animation . 12

2.3.5 Other interactive graphical application domains 13

2.3.6 Summary of application domains . 14

2.4 Interactive satisfaction algorithms. 15

2.4.1 Common issues . 16

2.4.2 Local-propagation based solvers . .. 19

2.4.3 Iterative numeric solvers . 29

2.4.4 Direct numeric solvers . 32

i

2.4.5 Differential methods . .. 38

2.5 Summary . 39

Chapter 3: The Cassowary Constraint Solving Algorithm and Toolkit 41

3.1 Introduction . 41

3.1.1 Constraint hierarchies and comparators 42

3.1.2 Adapting the simplex algorithm . .. 43

3.1.3 Overview . 44

3.2 Incremental simplex . 45

3.2.1 Augmented simplex form . 46

3.2.2 Simplex optimization . 50

3.2.3 Handling non-required constraints . 53

3.2.4 Incrementality: resolving the optimization problem 55

3.2.5 Incrementality: adding a constraint. 63

3.2.6 Incrementality: removing a constraint. 65

3.3 Implementation details . 69

3.3.1 Principal classes. 69

3.3.2 Solver protocol . 70

3.3.3 Variables . 72

3.3.4 Linear Expressions 74

3.3.5 Constraints . 75

3.3.6 Constraint Creation . 76

3.3.7 Symbolic Weights and Strengths . 77

3.3.8 ClSimplexSolver implementation . 80

3.3.9 ClTableau (Sparse Matrix) Operations 81

3.3.10 Omissions . 83

3.4 Comparator details . 83

3.5 Empirical evaluation . 86

ii

3.6 Summary . 87

Chapter 4: The Scheme Constraints Window Manager 88

4.1 Introduction .. 88

4.2 Background .. 89

4.2.1 X Windows andfvwm2 . 89

4.2.2 Scheme for extensibility .. 90

4.3 The system . 90

4.3.1 Basic philosophy. 91

4.3.2 Binary modules. 94

4.3.3 Graphical configuration . 94

4.3.4 Connecting to Cassowary .. 96

4.4 Constraints for layout .. 97

4.4.1 Applying constraints . 97

4.4.2 Managing constraints . 98

4.4.3 Constraint abstractions . 99

4.4.4 Inferring constraints 101

4.5 Usability study . 102

4.5.1 Methodology .. 102

4.5.2 Results . 102

4.5.3 Problems discovered . 103

4.5.4 Other observations . 103

4.6 Related work . 104

4.7 Summary and future work . 105

Chapter 5: Constraint Cascading Style Sheets 107

5.1 Introduction .. 107

5.2 Background .. 109

iii

5.3 Constraint Cascading Style Sheets. 115

5.3.1 A constraint view of CSS 2.0 . 115

5.3.2 Extending CSS 2.0 . 120

5.4 Implementation . 123

5.4.1 Prototype web browser . 123

5.4.2 Constraint solving algorithms 124

5.5 Related work . 125

5.6 Summary and future work . 127

Chapter 6: Constraint Scalable Vector Graphics 129

6.1 Introduction . 129

6.1.1 SVG is not enough 130

6.1.2 Contributions .. 131

6.2 Background. 132

6.2.1 XML: eXtensible Markup Language. 132

6.2.2 SVG: Scalable Vector Graphics . 134

6.2.3 CSS: Cascading Style Sheets. 135

6.3 Adding constraints to Scalable Vector Graphics 136

6.3.1 A layout example. 139

6.3.2 An animation example . 140

6.4 Implementation . 141

6.5 Related work . 144

6.6 Summary and future work . 145

Chapter 7: Conclusions and Future Work 147

7.1 Summary . 147

7.2 Limitations of Cassowary. 148

7.3 Limitations of the applications . 149

iv

7.4 Research in the open source community . .. 150

7.5 Compatibility of constraint extensions 151

7.6 Evolution of the toolkit . 151

7.7 Future work . 152

7.8 Conclusion . 153

Bibliography 154

v

LIST OF FIGURES

2.1 Taxonomy of interactive constraint solvers.. 17

2.2 Simple set of constraints for local propagation examples. 21

2.3 One-way (directed) constraint graph for Figure 2.2. 21

2.4 Predicate and satisfaction methods for a multi-way constraint. 22

2.5 Multi-way constraint graph for Figure 2.2.. 23

2.6 Two possible plans for executing Figure 2.5 asmchanges. 24

2.7 Example of walkabout strength assignments to variables.. 25

2.8 Bi-partite constraint graph showing constraints and the variables they relate. . . . 27

2.9 Simplex optimization problem. 34

3.1 Simple constrained picture . 45

3.2 Simplex optimization . 52

3.3 Resolving the constraints . 59

3.4 Dual Simplex Re-optimization . 62

3.5 Principle classes in the Cassowary implementations 70

4.1 An example SCWM primitive. 92

4.2 The “window-class ” procedure. 92

4.3 The automatically-generated options dialog. 95

4.4 SCWM constraint toolbar. 97

4.5 The nine nonants of a window. .. 99

4.6 Visual representation of constraints.. 100

4.7 Four windows tiled together. . .. 101

vi

5.1 Example HTML Document . 110

5.2 A simple Cascading Style Sheet example, simple.css 110

5.3 Document tree for the HTML of Figure 5.1. 112

5.4 Example HTML Document with a Table . 113

5.5 Stylesheet for table: table.css . 113

5.6 Example layout constraints. 116

5.7 Example finite domain constraints . 117

5.8 Example of overlapping rules . 118

5.9 Example of inheritance rules 119

5.10 Screen shots of the prototype browser . 122

6.1 SVG image of a lion cub. 129

6.2 SVG image diagramming an object hierarchy . 130

6.3 SVG source of the class hierarchy illustration. 133

6.4 The conventional process of delivering a raster image across the network. 136

6.5 The process of delivering a resolution-independent SVG image across the network. 137

6.6 The process of delivering a CSVG image across the network. 138

6.7 CSVG rendering of the class hierarchy inside a wide and short viewport 140

6.8 CSVG rendering of the class hierarchy inside a narrow and tall viewport 141

6.9 CSVG animation of a ball falling towards seesaw 142

6.10 CSVG source of the object hierarchy example . 143

vii

LIST OF TABLES

2.1 Overview of constraints and solvers in interactive graphical applications. 7

2.2 Constraints permitted by Kurlander’s Chimera. 10

2.3 Overview of local propagation algorithms.. 19

3.1 Subclasses ofClAbstractVariable . 74

6.1 Where properties of a graphic becomes fixed.. 139

viii

GLOSSARY OF WEB TERMS

CSS: Cascading Style Sheets, a W3C recommendation specifying the various properties of

elements on a web page that can be set. “Cascading” refers to the way conflicting preferences

from multiple style-sheet specifications are resolved.

DOM: Document Object Model, a W3C recommendation describing an application program-

ming interface for manipulating the in-memory tree representation of an XML document.

HTML: HyperText Markup Langauge, the standard markup language for textual content deliv-

ery on the World Wide Web through the 1990s.

SGML: Standard Generalized Markup Language, a meta-language for describing arbitrary tree

structured-documents and data standardized in the 1980s. SGML was the inspiration for

HTML, and XML is a much-simplified version of SGML.

W3C: World Wide Web Consortium, an industry consortium that issues “recommendations”

on various web protocols and languages including CSS, DOM, HTML, XML, and XSL.

XML: eXtensible Markup Language, a simplified version of the SGML meta-language for de-

scribing graph-structured documents and data.

XSL: eXtensible Style Language, a declarative XML-based language for describing tree to tree

transformations coupled with an XML-based language for “formatting objects” that describe

the layout of a page.

XSLT: eXtensible Style Language for Transformations, just the tree-to-tree transformation lan-

guage piece of XSL that can, e.g., be used to convert arbitrary XML into HTML.

ix

ACKNOWLEDGMENTS

My years in graduate school have been some of the best of my life. A large number of people

have contributed to making my time here educational and enjoyable. First, I thank my advisor,

Alan Borning, for his wisdom, encouragement, and advice. Alan provided the guidance I needed

to stay focused throughout this long process. I also thank the rest of my committee: David Notkin,

Richard Anderson, Alon Levy, and Jack Lee. I very much appreciate their valuable input and

interest in this work. David, in particular, I thank for shaping the early years of my graduate

school career as my master’s thesis advisor. I also owe great debts to the outstanding faculty

who broadened my knowledge throughout my course work: Craig Chambers, Brian Curless, Carl

Ebeling, Hank Levy, Larry Ruzzo, Larry Snyder, and Martin Tompa each influenced my thinking

through their thoughtful class discussions and projects. Also, thanks to Ed Lazowska for helping

to make the department such a great place to do research.

All research requires basic computing facilities and I was lucky enough to have an incredible

support team keeping our machines and network running smoothly. I thank our entire support staff

and especially Nancy Burr, Warren Jessup, Jan Sanislo, Varadesh Yenbut, and Eric Lundberg for

their going above and beyond the call of duty in handling all of my special requests.

Beyond computing facilities, there are innumerable details that completing a doctorate requires

addressing. I am extraordinarily grateful to Frankye Jones and Alicen Smith for hiding nearly all

of the bureaucracy from me and enabling me to focus on my research.

Over the last four years, I’ve interacted with a large number of incredibly talented and engaging

fellow graduate students. I thank my house-mates over the years, Todd Millstein, Craig Kaplan,

Doug Zongker, Tapan Parikh, Matt Carey, Will Portnoy, and Zasha Weinberg, for their innumerable

conversations about both technical and non-technical topics. Additionally, I thank the numerous

office-mates I’ve shared space with including Miguel Figueroa, Mike Ernst, Patrick Crowley, Den-

x

nis Lee, Jeremy Baer, Aaron Davis, Kevin Hinshaw, Neil Spring, Denise Pinnel, Dawn Werner,

Paul Franklin, Zack Ives, Rachel Pottinger, Andy Collins, Jong Hee Kang, and Karen Liu. I cannot

thank them enough for their discussions, suggestions, encouragement, and support.

Other folks around the department have been instrumental in pushing my thinking, in im-

proving my tennis, basketball, softball, and ultimate Frisbee abilities, and just simply being good

friends. Thanks go to Jonathan Aldrich, Corin Anderson, Gretta Bartels, A.J. Bernheim-Brush,

Jeremy Buhler, Brad Chamberlain, David Ely, Marc Fiuczynski, Marc Friedman, Justin Goshi,

Dan Grossman, Jason Hartline, Ed Hong, David Hsu, Tessa Lau, E. Christopher Lee, Soren Lerner,

Vass Litvinov, Omid Madani, Amir Michael, Alex Mohr, Bart Niswonger, Michael Noth, Kurt Par-

tridge, Sean Sandys, Stefan Saroui, Erik Selberg, Emin Gun Sirer, Brian Tjaden, Steve Wolfman,

and Ken Yasuhara.

Although much of my emotional and intellectual support came from those directly around

me, numerous friends stand out as important influences on my life thus far. I thank Allison Adin

Bianchi, Steve Burgos, Erin Casey, Michael Chiou, Emily Coleman Kangas, Jonathan Dattlebaum,

Scott Harrington, Nicole Marcson, Kristin Reddish, Andrea Restivo, and Julie Tseng for their

phone conversations and emails about anything and everything.

No research is done in isolation. I’m grateful to have had the opportunity to work with in-

credibly great people over the years. The Constraint Cascading Style Sheets work was largely

done while I was visiting Monash University in Melbourne, Australia. Kim Marriott and Peter

Stuckey were an absolute joy to work with, and I thoroughly loved my visit down under thanks

to their friendship and the other great people at Monash University including Warwick Harvey,

Lisa and Toby Sargeant, Tony Jansen, Richard Lin, Sitt-Sen Chok, and Maria Garcia de la Banda.

Also, thanks to Bert Bos and H˚akon Lie of the CSS working group of the World Web Consortium

(W3C); they provided very useful expert feedback on the early stages of the CCSS project.

The Cassowary Constraint solving toolkit has evolved greatly in the past several years. That

evolution’s success is largely due to the feedback I received from the users of the toolkit including

Anthony Beurivé, Alexandre Duret-Lutz, Michael Kaufmann, Brian Grant, Pengling He, Tessa

Lau, Sorin Lerner, John MacPhail, Larry Melia, Michael Noth, Emmanual Pietriga, Stefan Saroiu,

xi

and Steve Wolfman. The implementation of the Constraint Scalable Vector Graphics prototype

was done in collaboration with my fellow graduate student Will Portnoy. Additionally, the CSVG

work benefited from the advice of Vincent Hardy from the W3C’s SVG working committee.

SCWM involved a large engineering effort that leveraged numerous contributors as it grew in

the open-source community. Most notably, Maciej Stachowiak started the Scwm project a couple

weeks before I began working on the code base. Jeff Nichols did a substantial portion of the proto-

type implementation of the constraints interface for SCWM, and Sam Steingold, Robert Bihlmeyer,

and Todd Larason each made repeated significant contributions to SCWM.

Finally, I thank my mother, Karen, my father, Joseph, and my brothers, Mark and Eric. My

family’s love, support, and encouragement has been instrumental to my success and happiness. I

cannot possibly thank them enough for how they have shaped my life.

This work was supported by a National Science Foundation Graduate Research Fellowship, by

the University of Washington Computer Science and Engineering Wilma Bradley fellowship, and

by NSF Grant No. IIS-9975990.

xii

1

Chapter 1

INTRODUCTION

A constraint is a relation that we would like to maintain. For over thirty years, interactive graph-

ical applications have used constraints to relate user interface elements, components of drawings,

and more. The key benefit of constraints is the separation ofwhat relationships we desire from

howwe must go about maintaining those relationships.

1.1 Motivation

Two main problems have plagued constraint systems: expressiveness and performance. For con-

straints to be of benefit, we must be able to express interesting and useful relationships. For

systems solving those constraints to be acceptable in interactive applications, the algorithms must

be efficient enough to support real-time use.

Expressiveness and performance are in a delicate balance. Arbitrary constraints provide maxi-

mum expressiveness, but solving such systems is undecidable. On the other hand, many constraint

systems have been developed that have excellent performance, but are subject to significant limi-

tations in what can be expressed.

A third significant concern for constraint systems is understandability and predictability. Es-

pecially when interacting with on-screen objects, it is important that users understand why the

objects are acting as they do, and that they be able to achieve the results they expect. The theory of

constraint hierarchies [14] provides a declarative semantics for what constitutes correct solutions

for systems of constraints specified with varying levels of preferences. Solvers that respect the

hierarchy and avoid procedural side effects will most likely not surprise the user.

A fairly recent algorithm, Cassowary [18] strikes a seemingly useful design point in the tradeoff

2

between expressiveness and performance for constraints relating real-valued numbers: any linear

arithmetic relationship can be expressed, constraints can be required or at arbitrarily many levels of

preference, and performance of the solver is good. Cycles, which correspond to simultaneity in the

underlying problem, are no problem, and the solution respects constraint hierarchy theory (Sec-

tion 3.1.1). However, non-linear relationships (such as relationships involving Euclidean distance

between pairs of points) and non-numeric constraints cannot be maintained by Cassowary.

The thesis of my research is that constraint systems are now advanced enough to be treated as

a black box, and that they can be easily embedded in interactive graphical applications to provide

the benefits of constraints more broadly.

1.2 Contributions

The primary contributions of this dissertation are:

• The Cassowary constraint solving toolkit: an efficient, modular, reusable software compo-

nent that permits easy embedding of powerful constraint features in applications, including

the ability to solve simultaneous systems of linear arithmetic constraints of varying strengths

(Chapter 3). The toolkit implements the Cassowary algorithm from earlier work [18]. Chap-

ters 4, 5, and 6 each describe a use of this toolkit for the constraint support of the underlying

application. Experience building those systems has resulted in improvements in the toolkit,

and demonstrated the wide applicability of the algorithms and implementations.

• The Scheme Constraints Window Manager (SCWM): a powerful, highly-extensible, fully-

programmable, constraint-enabled X/11 window manager. SCWM embeds Cassowary and

demonstrates the applicability of sophisticated constraint solving algorithms to the domain

of highly-interactive graphical applications, and it provides a highly-usable interface to its

constraint features, a simple programming by demonstration system, and a simple form of

constraint inference. SCWM is an excellent starting place for further research into window

layout policies, voice-recognition interfaces for constraints, and other constraint capabilities

(Chapter 4).

3

• A constraint extension to Cascading Style Sheets (CSS), called Constraint Cascading Style

Sheets (CCSS), along with a prototype implementation of CCSS in the Amaya World Wide

Web Browser. CCSS provides a declarative framework for understanding the complicated

cascading rules of CSS and a unifying implementation technique (Chapter 5).

• A constraint extension to Scalable Vector Graphics (SVG) called Constraint Scalable Vector

Graphics (CSVG), along with a prototype implementation of CSVG based on the CSIRO

SVG viewer. CSVG permits delaying final layout of objects in an illustration. By treating

layout of objects as a presentation attribute, we increase flexibility of the images and permit

more appropriate rendering based on the user’s viewing conditions and desires (Chapter 6).

Chapter 7 summarizes, discusses some of the limitations of this research, and proposes avenues

for future work.

4

Chapter 2

BACKGROUND

2.1 Introduction

Numerous interactive graphical systems, including drawing, graph layout, visualization, and ani-

mation systems, embed a constraint solver to manage the geometric layout of on-screen objects.

These interactive and geometrically-based systems used in user interfaces make stringent demands

of the constraint solving technology—the solver must be powerful enough to handle geometric

constraints, fast enough for real-time interaction, and predictable enough to not confuse the user.

Section 2.2 describes some general issues regarding the semantics of constraints. Section 2.3

discusses the classes of constraints occurring in various interactive graphical applications. I then

describe and categorize the supporting constraint-solving technologies with respect to the kinds of

constraints they support. Section 2.4 details this taxonomy, and compares the expressiveness and

performance of the solvers. Section 2.5 concludes by summarizing important problems that future

work must address.

2.2 Constraint semantics

The theory of constraint hierarchies provides a declarative specification of the solutions to sets of

constraints, independent of the algorithms used to satisfy them [14].

Formally, a constraint is a mathematical relation: a Cartesian product overn domains. Con-

straints can be labelled with strengths. There is a single distinguishedrequired strength, and

arbitrarily many levels of preferences. Required constraints are called “hard,” while the others are

deemed “soft.” Often, numeric constraints are written using ordinary relational operators. We can

write:

required: x≥ y + 100

5

to specify a constraint that the scalar value assigned to the variablex must be at least 100 more

than the value assigned toy.

Multi-sets of labelled constraints form a constraint hierarchy. A solution to a constraint hierar-

chy is an assignment of all free variables in the hierarchy to values in the domain of the relation.

Each such valuation, when applied, must satisfy all required constraints, and should satisfy all

soft constraints as well as possible, treating all stronger constraints as more important than any

weaker ones. Various “comparators” are used to compute how closely a valuation satisfies con-

straints. Locally-better comparators consider each constraint individually, while globally-better

ones consider sums of errors across all the constraints.

Soft constraints and comparators are a means of specifying optimization functions for choosing

a solution from the feasible region described by the required constraints. Though an arbitrary

objective function could be allowed, comparators attempt to enumerate useful objectives and may

also yield more efficient solving algorithms. For example, locally-better comparators enable the

use of greedy solving algorithms.

An important consideration when choosing among possible solutions is the stability of the fig-

ure. Objects in a layout should not move unless there is some reason for them to change positions.

One way to express this desire is to weakly constrain each attribute to take its value from the pre-

vious time step. To disallow the present from changing the past, we can use a read-only annotation

on the past, and express these weak “stay” constraints as:xt = xt−1? where the question mark de-

notes a read-only variable that cannot have its value changed by the solver to satisfy a constraint.

Read-only variables are also important for modeling the semantics of one-way constraint systems,

which are solved efficiently by various “local propagation” algorithms (Section 2.4.2).

The most important contribution of constraint hierarchy theory is the formalization of the

declarative semantics of constraint systems. By understanding from first principles what the set of

solutions is and which one is best, we can then judge constraint solving algorithms with respect to

its ability to find solutions, the expressiveness of the supported constraints, and its time and space

performance characteristics.

A proper formal semantics for constraint systems is also important for reasoning about solving.

For example, knowing the right answer is essential to verify the correctness of optimizations such

6

as constraint compilation.

2.3 Constraints across applications

Interactive graphical applications use constraints primarily to express desires regarding geometric

layout. All of these systems are similar in that they expose constraints to the end user. However,

the representations of constraints and to what they are attached vary substantially. Representation

can influence the expressiveness and efficiency of a constraint solver by altering what kinds of

relationships can be specified within the limitations of the solver.

For example, if line segments are represented using a starting point, direction, and length, a

constraint that two lines are the same length or parallel is easy to express using a simple linear

equality. Those same relationships will require non-linear equations if line segments are stored

as Cartesian coordinates of the start and end of the segment. Since solving general non-linear

constraints is computationally difficult, systems often rely on domain-specific methods to handle

the non-linearities they deem most important.

I now examine constraints in applications for drawing, graph layout, visualization and anima-

tion systems. For each application, I highlight the unique and interesting features of the system

while listing the class of constraints it handles. For an overview of the kinds of constraints sup-

ported by each system, the solving technique employed, and the performance of the solver, see Ta-

ble 2.1. Most notably, this section will show that applications tend to restrict their use of constraints

based on limitations of the underlying solver. Section 2.4 will discuss the relative expressiveness

of the various satisfaction algorithms used by the applications discussed in this section.

2.3.1 Drawing

Interactive drawing applications employing direct-manipulation techniques [129] have been very

successful. For professional-looking diagrams and illustrations, however, they sometimes fall short

due to the lack of precision in the diagram. Most conventional drawing systems permit alignment

of objects, but such relationships are only enforced once—at the time the command is issued. If an

aligned object is later moved, the other objects do not follow. Constraint-based drawing systems

permit the persistence and maintenance of desired relationships to ease editing burden and ensure

7

Ta
bl

e
2.

1:
O

ve
rv

ie
w

of
co

ns
tr

ai
nt

s
an

d
so

lv
er

s
in

in
te

ra
ct

iv
e

gr
ap

hi
ca

la
pp

lic
at

io
ns

.

S
ys

te
m

A
ut

ho
r(

Ye
ar

)
C

on
st

ra
in

ts
su

pp
or

te
d

S
ol

vi
ng

te
ch

ni
qu

e

S
ke

tc
h

p
a

d
S

u
th

e
rl

a
n

d
(1

9
6

3
)

g
e

o
m

e
tr

ic
lo

ca
lp

ro
p

a
g

a
tio

n
,r

e
la

xa
tio

n

ID
E

A
L

V
a

n
W

yk
(1

9
8

2
)

g
e

o
m

e
tr

ic
in

co
m

p
le

x
p

la
n

e
lo

ca
lp

ro
p

.
w

/o
p

la
n

n
in

g

Ju
n

o
N

e
ls

o
n

(1
9

8
5

)
C

O
N

G
,P

A
R

A
,H

O
R

,V
E

R
ite

ra
tiv

e
n

u
m

er
ic

Ju
n

o
-2

H
ey

d
o

n
&

N
e

ls
o

n
(1

9
9

4
)

C
O

N
G

,P
A

R
A

,H
O

R
,V

E
R

o
p

tim
iz

ed
ite

r.
n

u
m

.

B
ria

r
G

le
ic

h
e

r
&

W
itk

in
(1

9
9

4
)

p
o

in
ts

-o
n

-o
b

je
ct

,c
o

in
ci

d
e

n
t

d
iff

e
re

n
tia

lm
e

th
o

d
s

U
n

id
ra

w
H

e
lm

e
ta

l.
(1

9
9

5
)

lin
ea

r
(in

)e
q

u
a

lit
ie

s
d

ire
ct

n
u

m
e

ric
(Q

O
C

A
)

G
C

E
K

ra
m

e
r

(1
9

9
2

)
g

e
o

m
e

tr
ic

D
O

F
a

n
a

ly
si

s

C
h

im
e

ra
K

u
rl

a
n

d
e

r(
1

9
9

1
)

g
e

o
m

e
tr

ic
sy

m
b

o
lic

,n
u

m
e

ri
c

Drawing

P
eg

a
su

s
Ig

a
ra

sh
ie

ta
l.

(1
9

9
7

)
g

e
o

m
e

tr
ic

C
L

P
(R

)-
lik

e

G
L

ID
E

R
ya

ll
e

ta
l.

(1
9

9
7

)
V

O
F

s
sp

rin
g

si
m

u
la

tio
n

Graph

C
G

L
H

e
e

ta
l.

(1
9

9
6

)
lin

ea
r

(in
)e

q
u

a
lit

ie
s

ite
r.

n
u

m
er

ic

T
R

IP
N

,
Ta

ka
h

a
sh

ie
ta

l.
(1

9
9

8
)

lin
e

a
r

g
e

o
m

e
tr

ic
g

ra
p

h
-l

a
yo

u
t,

d
ir

e
ct

&
ite

ra
tiv

e

IM
A

G
E

IC
O

L
A

O
st

e
r

&
K

u
sa

lik
(1

9
9

8
)

lin
ea

r
in

eq
u

a
lit

ie
s

ex
tr

e
m

e
-b

o
u

n
d

p
ro

p
a

g
a

tio
n

Visualization

P
e

n
g

u
in

s
C

h
o

k
&

M
a

rr
io

tt
(1

9
9

8
)

lin
ea

r
(in

)e
q

u
a

lit
ie

s
d

ire
ct

n
u

m
e

ric
(Q

O
C

A
)

T
L

C
C

G
le

ic
h

e
r

&
W

itk
in

(1
9

9
2

)
g

e
o

m
e

tr
ic

(o
n

ca
m

e
ra

im
a

g
e

)
d

iff
e

re
n

tia
lm

e
th

o
d

s

A
n

im
u

s
D

u
is

b
e

rg
(1

9
8

7
)

ar
b

itr
ar

y
a

cy
cl

ic
lo

ca
lp

ro
p

a
g

a
tio

n
,r

e
la

xa
tio

n

Animation

JI
M

,P
a

rc
o

n
G

ri
e

b
e

le
ta

l.
(1

9
9

6
)

lin
ea

r
(in

)e
q

u
a

lit
ie

s,
g

e
o

m
et

ric
ite

ra
tiv

e
n

u
m

er
ic

8

precision in the diagram. To date, drawing programs are the most common interactive graphical

applications to use constraints.

Sutherland’s Sketchpad, the earliest interactive constraint-based system, permitted constraints

on the parts of a figure to be explicitly specified. For example, a pair of lines can be made equal

in length, or an angle can be marked as a right angle [134, App. A]. Additionally, the user implic-

itly adds constraints through the use of the “pseudo-pen location” which locks the input pointer

position onto topologically-important locations in the diagram. A similar input technique called

“snap-dragging,” developed years later by Bier, uses the snapped-to positions only for their abso-

lute location [9]. Sketchpad, in contrast, stores and maintains the constraint relationships as objects

are rearranged.

Sketchpad was ahead of its time; IDEAL, the next constraint-based system specifically tar-

geting drawing, appeared almost twenty years later [138]. Unlike Sketchpad, IDEAL is strictly a

textual language for specifying pictures—it is not an interactive system. IDEAL permits specify-

ing arbitrary non-simultaneous constraints on points in the complex plane. The drawing is then

created procedurally from a configuration of the points that satisfies the constraints.

Like Sketchpad, Juno and Juno-2 [112, 76] are interactive systems. Juno permits specifying

constraints on points and line segments. There are only four predicates:HORandVERexpress the

horizontal and vertical relationship between pairs of points, whileCONGandPARAare congru-

ence and parallel relationships (both non-linear) between pairs of line segments. Juno’s constraint

relationships are specified at a higher level of abstraction than Sketchpad or IDEAL, though in-

ternally they are maintained as numerical mathematical relationships. Juno provides double-view

editing, where both the graphical picture and the (partially declarative) program that constructed it

are viewed simultaneously. Interactive direct-manipulation of the picture is reflected immediately

as implicit edits of the program’s text.

Briar [59] is an interactive drawing editor that permits expressing exactly two geometric con-

straints: points-on-objectandpoints-coincident. Although this set of relations is limited, Briar

re-gains expressive power by allowing “alignment objects.” Such objects exist only as constraint-

assistance artifacts and are not part of the appearance of the final drawing. For example, the

constraint that pointp is distancek away from pointq can be expressed by placing an alignment

9

circle centered at pointq, and constraining pointp to be on that circle. Constraints among both

regular and alignment objects are specified implicitly through an extension of Bier’s snap-dragging

suitably named “augmented snap-dragging” [53]. Adding a constraint on a new object corresponds

directly to creating that new object while the pointer is snapped onto a pre-existing object or point.

Unlike other systems, in Briar there is never a need to manage constraints explicitly. Removing a

constraint is performed by breaking constraints through “ripping apart” objects—the user specifies

only the desired effects and the system chooses which constraints must be eliminated.

Unidraw [72] is an extension of an earlier direct-manipulation drawing program. It permits ar-

bitrary simultaneous linear equalities and inequalities among attributes of its various predefined ob-

jects. This class of constraints is shared by the CDA [114] drawing application, and Penguins [28],

a drawing-editor construction framework (analogous to YACC for generating language parsers).1

Among those listed here, Unidraw and the CDA are the only drawing editors without any support

for non-linear constraints. Also, Unidraw is unique among constraint-based drawing editors in

its support forundo and redo operations. Although typically challenging to implement, these

features are permitted by Unidraw’s ability to easily enable and disable constraints and to save and

restore the state of the entire constraint system.

Kramer’s Geometric Constraint Engine [90] (GCE is an extension of his earlier The Linkage

Assistant, or TLA) is not specifically a drawing editor, but solves the same class of geometric

layout problems. GCE permits five classes of binary constraints between geometric objects, or

geoms: distance between a point and a point, line, or plane; distance between a line and a circle;

and angle between a pair of vectors. These constraints are tied to the geometric degrees-of-freedom

analysis performed in Kramer’s underlying solver (see Section 2.4.5).

Chimera [91, 93] not only supports drawing constrained figures, but also provides a constraint

inference engine. Kurlander’s system permits the constraints shown in Table 2.2. Like GCE, the

constraints supported by Chimera are directly related to a solving technique characterized by rea-

soning about transformational groups. Chimera’s inference engine works by comparing multiple

snapshots and constraining the properties that are invariant (within a tolerance) across the snap-

shots. Instead of explicitly stating what relationships one wants to hold, the user must vary all

1See Section 2.3.3 for more discussion of Penguins.

10

of the degrees of freedom that are meantnot to be constrained. The invariant-detection tolerance

mechanism employed by Chimera for detecting invariants is similar to Pavlidis’s automatic beau-

tification in PED [119]. PED, however, only infers the constraints and makes the diagram more

precise, whereas Chimera dynamically and interactively maintains the constraints.

Table 2.2: Constraints permitted by Kurlander’s Chimera [91, p. 14]

Absolute Constraints Relative Constraints

Fixed vertex location Coincident vertices

Distance between two vertices Relative distance between pairs of vertices

Distance between parallel linesRelative distance between pairs of parallel lines

Slope between two vertices Relative slope between two pairs of vertices

Angle between three vertices Equal angles between two pairs of three vertices

Pegasus (Perceptually Enhanced Geometric Assistance Satisfies US) [84] is a rapid sketch-

ing tool that also interactively infers constraints. Pegasus recognizes seven kinds of constraints:

connection, parallelism, perpendicularity, alignment, congruence, symmetry, and interval equality.

Unlike Chimera, the constraints Pegasus infers are not maintained (i.e., they are one-shot correc-

tions, more akin to snap-dragging).

2.3.2 Graph layout

Graph layout is a particularly challenging application for use of constraints. The aesthetic criteria

by which a graph layout is judged is difficult to express using simple relationships. In general,

graph layout requires minimization of a greater-than-quadratic objective for visually-pleasing re-

sults. Optimization criteria often includes eliminating node overlaps, minimizing edge crossings,

and maximizing symmetries. Classical graph layout algorithms are typically expensive, batch-

oriented computations [37, 38].

Wieqing He and Kim Marriott describe a non-interactive system for constrained graph layout

in which the constraints are used to specify further requirements beyond a classical batch layout

11

algorithm’s aesthetic criteria [71, 100]. They use three different layout modules and augment them

with a constraint solver to enforce the user-specified simultaneous linear equality and inequality

constraints. Davidson and Harel use simulated annealing to layout graphs nicely, but do not permit

extra general constraints on the nodes in the resulting figure [35].

GLIDE [122] is an interactive system for graph layout that uses constraints in the form of Visual

Organization Features (VOFs). The VOFs it supports (inherited from earlier work by Marks)

include alignment, even spacing, sequence, cluster, T-shape, zone, symmetry, and hub-shape [36,

89]. Phantom nodes (similar to Gleicher’s alignment objects) are used as alignment guides. All of

these constraints specify local relationships among small groups of nodes.

Other interactive graph layout systems do not include any general constraints but simply pro-

vide an interactive means of viewing and manipulating graphs laid out through conventional algo-

rithms [74, 73].

2.3.3 Visualization

Visualization systems provide pictures for abstract data. These visual representations permit view-

ers to exploit their perceptual skills in exploring data. Graph layout (see Section 2.3.2) is one

well-studied domain of visualization. Interactive visualization systems can use constraints to aid

in producing semantically meaningful pictures.

TRIP (TRanslate Into Pictures) [88] and its successors TRIP2, TRIP2a, TRIP3D, TRIP3, and

IMAGE [135] are all frameworks for visualizing abstract data. The TRIP systems provide mapping

rules to translate between an Abstract Structure Representation (ASR), which is derived from an

Application Representation (AR), and a Visual Structure Representation (VSR). The VSR level in-

cludes graphical objects along with geometric constraints. Some constraints span multiple objects:

horizontal/vertical, spacing, and averaging; another constraint specifies the position of objects (the

at constraint). Finally, there are graph-layout constraints for adjacency and for drawing edges

to connect two nodes in the VSR. From the VSR, a picture representation (PR) is generated by

solving the constraints (using the COnstraint-based Object Layout system, or COOL). Constrained

editing of the resulting picture is not permitted. The TRIP systems’ constraints are very similar to

those provided by theGLIDE graph layout system (see Section 2.3.2).

12

The Wand visualization system embeds ICOLA (Incremental Constraint-based Object Layout

Algorithm) [116]. Wand’s architecture is similar to TRIP, though it specifically targets visualiza-

tion of logic program execution. ICOLA provides only linear inequality constraints—to enforce

that two object attributes are equal, one must use two non-strict inequalities. ICOLA’s constraint

language allows higher-level, “aliased,” constraints that map into one or more of four basic con-

straints:left of , horizontal distance , above , andvertical distance . The fifth

basic constraint,connected , draws an arc or edge between two objects (as did the similar pro-

cedural “connects” constraint in TRIP). The DOODLE (Draw an Object-Oriented Database Lan-

guagE) [34] system provides similar functionality and constraints but provides a visual rather than

textual specification language.

Penguins [28] is an intelligent diagram editor construction toolkit. It is to drawing editors

what YACC is to parsers. The Penguins system uses constraints in two separate ways. First, it

uses them for visual parsing, using the theory of constraint multi-set grammars (CMGs) [99, 27].

After building an internal abstract representation of a picture, editors created using Penguins then

permit direct manipulation of the picture while interactively maintaining the constraints. Penguins-

generated drawing editors permit arbitrary linear equality and inequality constraints.

2.3.4 Animation

Animation, like graph layout, is an especially challenging domain for the application of constraints.

Much of the work on using constraints with animation systems is for non-interactive solvers. Con-

straint based motion adaptation [56], space-time constraints [144], and motion interpolation meth-

ods [23] all address solving huge multi-frame animation systems over time to provide meaningful

character or object movement subject to certain desires. These are batch systems whose computa-

tion expense is justified in light of the resources required for subsequently rendering the frames of

the animation.

Numerous visualization systems, including TRIP (see Section 2.3.3), and widget toolkits (see

Section 2.3.5) provide animations meant to provide user-feedback for global changes made to the

visual state of the system. TRIP provides “transition mapping rules” which are abstractions of

procedures for interpolating between visual representations of two states. Artkit [82] provides a

13

similar “transition” abstraction for animations to be used when an object’s state changes. Amulet

[105] exploits the constraint solving framework’s monitors guarding assignments to slots (i.e., the

ability to execute code on every assignment) to provide a similar interpolated animation when a

slot’s value is set.

Animus [12, 40] uses the ThingLab system [10] and provides animations for its simulations

using constraints on time. In Animus, time is treated as a distinguished global variable. Ani-

mus provides two time-related constraints: 1) time function constraints which act as a declarative

specification of events and responses to those events (similar to the Amulet monitors mechanism,

above); and 2) ordinary differential equations for describing continuous motion (similar to Briar’s

use of differential methods [59], see Section 2.4.5).

Griebel et al. undertook a similar use of constraints for animation within the Pictorial Janus

(PJ) visual programming language [65]. Other constraints they provide include linear equalities

and inequalities, product equalities and inequalities, point coincidence, and distance constraints.

They also provide a circular-disjoint relationship to prevent objects from overlapping.

2.3.5 Other interactive graphical application domains

Other application domains have used geometric constraints with some success. Window layout

systems employing constraints include the Constraint Window System (CWS) [43] for Smalltalk,

a constraint-based tiled window manager called RTL/CRTL (Research and Technology Laborato-

ries Constrained Rectangular Tiled Layout) [31] for the Sapphire Window System, Trestle from

Digital/Compaq SRC [97], and SCWM (Scheme Constraints Window Manager) [5, 6] for the X11

window system (see Chapter 4). These systems permit specification of constraints over the win-

dows regarding their presence, size and location, adjacency and alignment, and hierarchical or-

ganization. All systems restrict their constraints to rectangular windows, but face stiff challenges

due to the highly dynamic nature of windowing environments where new objects come and go fre-

quently. Vander Zanden et al. discuss ways to cope with these dynamic relationships [140]. Their

work is a generalization of Borning’s “paths” [10, p. 39–41].

A similar application is web page layout. A prototype Java-based web browser permits page

layout and applet layout to be specified using linear equalities and inequalities [15, 100]. For page

14

layout, only rectangular bounding boxes are considered. The browser interactively lays out the

page again and again as the enclosing window size changes, preserving the desired constraints. A

subsequent effort involved extending the World Wide Web Consortium’s (W3C) Cascading Style

Sheets recommendation to support constraints. CSS’s complex cascading rules can be understood

in the context of constraint hierarchy theory, and generalized to permit greater expressiveness

(Chapter 5). Constraints can also be used to extend the Scalable Vector Graphics standard (Chap-

ter 6).

User interface widget toolkits are second only to drawing editors in their widespread use of

constraints. Numerous widget toolkits, including Amulet [102, 110], its predecessor Garnet [108],

and OPUS of the Penguims2 user-interface management system [81], all provide one-way con-

straint solvers for relating the components in a widget hierarchy. Bramble [54] is the toolkit with

which the Briar (see Section 2.3.1) drawing editor is implemented.

Other constraint-based interactive systems have been used for graphical search and replace [92,

93], curve manipulation independent of representation [46], and color management for windowing

interfaces [96].

2.3.6 Summary of application domains

As Table 2.1 shows, the kinds of constraints supported by different systems within an application

domain vary widely. The similarities that do exist result more from the underlying solver than

from the needs of a particular class of applications (see the following section). Applications also

vary greatly in at what level of abstraction the constraints are managed.

Systems including Briar [59], GCE [90], Chimera [91, 93], Pegasus [84], andGLIDE [122]

express constraints on complete objects in the system. These constrain attributes such as angles

between vectors, Euclidean distances between points and lines, coincidence of a point and an

object, and symmetries. Such constraints are the highest level of abstraction provided by any of

the systems considered.

Several drawing systems, such as IDEAL [138], Juno [112], and Juno-2 [76], permit specifying

constraints on points, and then parameterize drawings based on the locations of those points. After

2Not to be confused with Chok and Marriot’s Penguins intelligent diagram editor toolkit.

15

the constraint satisfaction algorithm solves for absolute point locations, procedural code fragments

connect lines, draw circles, and otherwise flesh out the drawing. These systems provide greater

flexibility in final appearance, but expose a mixed declarative and procedural interface to the end

user. (A similar mix of paradigms is used by Animus [40], which is built on ThingLab [10].)

A third general approach, used by Unidraw [72], CDA [114] and Penguins [28, 100], involves

expressing numerical constraints on attributes (also called reference points, selectors, aspects, and

landmarks) of objects that have an implicit visual representation. The modification of a constrained

attribute’s value (e.g., a rectangle’s northwest corner, or a circle’s center) is reflected by updating

the position of the corresponding on-screen object. “Internal” constraints often implicitly relate

attributes to each other, e.g., relating two corners of a box: box.ne.x = box.nw.x + box.width.

The level of abstraction for specifying constraint relationship is significant because it can de-

couple the application from the solver. Higher levels of abstractions may rely less on solver depen-

dencies, and they may permit substituting a more efficient or powerful solver without influencing

the rest of the system. Limiting the constraints to simple linear numerical constraints may provide

a similar benefit, despite being at the opposite end of the abstraction level spectrum.

2.4 Interactive satisfaction algorithms

Different genres of applications do not necessarily provide the same constraint types. For example,

drawing programs, though attacking the same problem, have different formulations of the relation-

ships they provide: Gleicher’s Briar [59], Kurlander’s Chimera [92, 93], Nelson’s Juno [112], and

Unidraw [72] all provide different constraint mechanisms. Conversely, Unidraw, Penguins [28],

and SCWM all expose the same constraint-solving interface, yet they belong to different applica-

tion domains. The constraints that a specific application permits the user to specify are dependent

not on the kind of application but on the underlying solving technology.

Juno provides an excellent example of the relation between constraints permitted and the under-

lying solving technology. Juno’s author, Greg Nelson, explains that he had attempted to provide a

fifth predicate,CC(counter-clockwise), to disambiguate under-constrained systems. However, be-

cause the counter-clockwise relationship translates into an inequality constraint which the Newton-

Rhapson solver Juno uses could not easily handle, he discarded that approach and instead chose to

16

exploit a “feature” of Juno’s underlying iterative numerical solver: the solution’s dependence on

the initial guess. Thus, Nelson added the ability to provide hints to the solver (which in turn led to

the need forRELconstruct) [112, p. 238–239].

This section discusses the various satisfaction algorithms developed for interactive geometric

applications, and relates them to one another while pointing out their strengths and weaknesses.

Figure 2.1 graphically depicts the relationships among the over twenty different constraint satis-

faction algorithms considered here.

2.4.1 Common issues

The issues constraint solvers must address and some of the approaches for remaining efficient

are similar. Constraint systems for interactive graphics must deal with under-constrained systems.

An under-constrained system has remaining degrees of freedom so multiple possible solutions

exist. Constraint hierarchies [14, 17, 48] provide a popular and well-studied means of removing

ambiguity by over-constraining the system with constraints at decreasing levels of preference (see

Section 2.2).

A related concern for solvers is to maintain spatial stability of the system. When a geometric

system is under-constrained, successive solutions are more useful if they are sufficiently similar

to prior configurations. A satisfaction technique that alternates between two (visually) distantly

related solutions will be confusing to the end user. Supporting the “principle of least astonish-

ment” [65] is a ubiquitous goal for constraint satisfaction algorithms. “Stay” constraints are used

in solvers supporting constraint hierarchies to express the desire for things to remain where they

are unless some stronger constraint forces them to move. Numeric solvers often handle under-

constrained systems by providing spatial stability by minimizing change from the previous solu-

tion.

Another commonality among the solver implementations is that they exploit sharing of data

structures to provide the equality or coincidence-of-points constraint. Many systems manage their

data structures to alias related variables when such a constraint is added and to “explode” the

variables back into their unrelated instances when such a constraint is removed. This technique

is largely independent of the satisfaction algorithm itself and often provides a substantial perfor-

17

Q
ui

ck
P

la
n

pr
op

ag
at

e
fr

ee
do

m

D
el

ta
S

ta
r

ge
ne

ra
liz

ed
 C

H
ov

er
 fl

at
 s

ol
ve

rs S
ky

B
lu

e
m

ul
ti-

ou
tp

ut
, c

yc
le

s
(g

en
er

al
iz

e
w

al
k-

st
re

ng
th

to
 w

al
k

bo
un

ds
)

U
ltr

aV
io

le
t

hy
br

id
 fr

am
ew

or
k

w
ith

 s
ub

so
lv

er
s

C
as

so
w

ar
y

in
cr

em
en

ta
l s

im
pl

ex

Q
O

C
A

m
et

ric
-s

pa
ce

op
tim

iz
at

io
ns

N
ew

to
n-

R
ha

ps
on

G
LI

D
E

sp
rin

g
m

od
el

D
iff

er
en

tia
l

M
et

ho
ds

R
el

ax
at

io
n

G
ra

ph
 L

ay
ou

t

G
ua

ss
ia

n
E

lim
in

at
io

n
eq

ua
lit

y
cy

cl
es

A
rb

itr
ar

y
do

m
ai

n
N

um
er

ic
on

ly
Ite

ra
tiv

e
P

hy
si

ca
lly

-
ba

se
d

G
eo

m
et

ric
LP

 o
f D

O
F

O
pt

im
iz

at
io

n

D
E

T
A

IL
su

bs
ol

ve
rs

fo
r

cy
cl

es

S
im

pl
ex

ba
se

d

O
ne

-w
ay

 L
P

ea
ge

r
or

 la
zy

si
m

pl
e

cy
cl

ic
 o

r
ac

yc
lic

D
el

ta
B

lu
e

w
al

k
st

re
ng

th
 to

pr
op

ag
at

e
co

nf
lic

t

M
ul

ti-
w

ay
 L

P
 (

B
lu

e)
pr

op
ag

at
e

fr
ee

do
m

 [S
ke

tc
hP

ad
]

or
 a

ls
o

kn
ow

n
st

at
e

[T
hi

ng
La

b]

In
di

go
pr

op
ag

at
e

bo
un

ds
fo

r
ac

yc
lic

 in
eq

ua
lit

ie
s

F
ig

ur
e

2.
1:

Ta
xo

no
m

y
of

in
te

ra
ct

iv
e

co
ns

tr
ai

nt
so

lv
er

s.
G

en
er

al
cl

as
se

s
of

al
go

rit
hm

s
ar

e
de

m
ar

ca
te

d
by

do
tte

d
lin

es
,

co
nt

ai
nm

en
t

of
su

b-
so

lv
er

s
by

lig
ht

so
lid

lin
es

,
ar

ro
w

s
in

di
ca

te
ev

ol
ut

io
na

ry
re

la
tio

ns
hi

ps
,

an
d

pr
ox

im
ity

ro
ug

hl
y

co
rr

el
at

es
w

ith
re

la
te

dn
es

s.
E

sp
ec

ia
lly

cl
os

el
y-

re
la

te
d

bu
ti

nd
ep

en
de

nt
ly

de
si

gn
ed

sy
st

em
s

ar
e

co
nn

ec
te

d
by

bi
-d

ire
ct

io
na

ld
ot

te
d

ar
ro

w
s.

18

mance improvement by reducing the size of the system, since equality constraints are especially

common.

The variable aliasing optimization is generally beneficial because it performs work outside of

the constraint solving algorithm and does not change the semantics of the system. Other tech-

niques external to the solver are used to increase expressiveness. For example, theconnects

relationship for graph drawing and visualization systems, which states that two objects in a di-

agram should be connected by a line, is often not maintained by adding constraints to compute

appropriate positions for the edge endpoints. Instead,connects is implemented by procedural

code that simply draws the requested edge, performing its own computations as necessary. At first

glance, this technique seems to defeat the beneficial declarative nature of constraints. However,

it is important to separate the semantics of the relationship from the algorithm maintaining it. As

long as the system represents the relationship clearly and adheres to its semantics, the underlying

implementation need not exploit constraint solving to be of value. These special relationships,

by necessity, must be disconnected from the rest of the constraint graph, and the technique can

be seen as simply a very restricted domain-specific sub-solver, similar to the sub-solvers used by

Ultraviolet [13] orDETAIL [79].3

Interactive constraint solvers are often split into a planning, or compilation, stage and an exe-

cution stage. During planning, the solver pre-computes all state that will remain fixed throughout

a class of executions. These restrictions permit the system to be more efficient during the corre-

sponding solver iterations, and must simply maintain the proper semantics. In some cases, solvers

using dynamic languages actually compile the code of the inner loop. The basic idea is similar to

loop-invariant code motion and dynamic compilation techniques. Some time is spent in advance,

when it is less precious, to increase the performance during the tight interaction and animation

loop.

The remainder of this section discusses the several constraint satisfaction algorithms and con-

siders their performance and expressiveness.

3In contrast, the Juno systems [76, 112] take this approach to an extreme and permit the user to specify arbitrary
code parameterized on the points. Here the benefits of declarative specification are largely lost to provide greater
flexibility in drawing.

19

2.4.2 Local-propagation based solvers

Local propagation is one of the earliest constraint solving techniques and is conceptually very sim-

ple. Sutherland’s initial formulation of local propagation, the “one-pass method” [134, p. 58–59],

is a highly efficient algorithm used whenever possible before falling back to his more general (but

slower) relaxation algorithm (see Section 2.4.3). The most significant limitation of propagation-

based solving is its inability to consider more than one constraint at the same time. This shortcom-

ing prevents solving simultaneous linear equations and other systems that require manipulations

of multiple constraints at once.

Local propagation techniques vary along several dimensions: one-way vs. multi-way con-

straints; constraint hierarchies vs. flat systems; acyclic only vs. cycles allowed; single-output

vs. multiple-output; and equality (functional) relationships only vs. inequalities and other non-

functional relationships permitted. See Table 2.3 for an overview of the systems described in this

section.

Table 2.3: Overview of local propagation algorithms.

Solver Multi-way? C.H.?a Cycles ok? Multi-output? Ineqs.?

Sketchpad (1-pass) yes no no no no

ThingLab yes no no no no

ARTKit Penguims no no no no no

Garnet and Amulet no no partially no no

(Delta)Blue yes yes no no no

QuickPlan yes yes yes yes no

SkyBlue yes yes yes yes no

DETAIL yes yes yes yes no

Indigo yes yes no no yes

a“C.H.?” abbreviates “Constraint Hierarchies?”.

20

One-way local propagation constraint solvers

The simplest local propagation solvers are embedded in widget layout kits such as ARTKit’s Pen-

guims [81], Amulet [110] and Garnet [108]. These tools perform only one-way solving—a con-

straint such asx = y + z+ 10 will be maintained only by settingx (the output variable) and never

by settingy or z (the input variables). Although this example constraint is numeric, one of lo-

cal propagation’s strengths is that the relationships may be specified over arbitrary domains—the

only restriction is that the output value is determined by a function (e.g., inequality constraints are

non-functional and require a more powerful propagation algorithm).

Since one-way constraints are always maintained by evaluating the same assignment method,

the satisfaction algorithm must simply decide which constraints’ methods must be invoked and in

what order. Consider the example in Figure 2.2. The corresponding constraint graph with variables

as nodes and directed multi-edges representing constraints appears in Figure 2.3. (The nodes

are directed because the constraints are one-way.) After a variable is changed, all downstream

variables must be updated by enforcing the constraints in topological order.4 The one-way local

propagation solver propagates values along the constraint graph.

Although one-way constraints are often described in terms of the implementation of the under-

lying solver, they can be understood declaratively using read-only annotations [14]. A read-only

annotation on a variable, often made using a question mark symbol after the variable in a constraint,

denotes that the variable cannot be altered as a result of that constraint. Information can flow out

from the read-only variable, but not back into it. A one-way constraint, then, is represented as a

constraint in which only one variable is not annotated as read-only.

Simple one-way constraint solvers can maintain their relationships using a standard topological

sort, based on a depth-first search of the directed constraint graph.5 Its computational complexity

is O(V + C), whereV is the number of variables (i.e., nodes), andC is the number of constraints

(i.e., edges). Although the structure of the constraint graph only changes when constraints are

4Alternatively, downstream variables may be marked invalid, and the constraints can be lazily enforced when a
variable’s value is requested. Experience suggests that for common layout tasks the cost in maintaining the invalid
bit exceeds the savings from unused evaluations [109].

5This algorithm only works because we restrict the constraint graph to not contain cycles—more powerful techniques
are required if constraints interact (see Section 2.4.4).

21

C1 : m = (x1+x2)
2

C2 : x1 = pointer position
C3 : x2 = x1 + 6
C4 : r = m2

Figure 2.2: Simple set of constraints for local propagation examples.

x1

x2

rm
C1

C4C3

C2pointer
position

Figure 2.3: One-way (directed) constraint graph for Figure 2.2.

added or removed, the values propagated can change rapidly. For example, when the user is in-

teracting with the system shown in Figure 2.3,x1 will vary as the user moves the mouse pointer.

Local propagation solvers can optimize for this interaction by maintaining the topologically sorted

graph and simply traversing it while executing the methods for each new position. This design

reflects the previously-mentioned separation of planning (sorting the graph) and executing (firing

the constraint-enforcing methods) which we will see again and again. Readers fluent with linear

algebra may recognize the planning stage as the ordering of rows and the execution stage as the

back-substitution phase in the solving of a system of equations using Gaussian elimination. How-

ever, remember that local propagation is not limited to numeric domains—a constraint relationship

can, for example, specify that a strings should always contain the printable form of the current

color of a circle.

The separation of planning and execution is not essential, but is an optimization. Van Wyk’s

constraint satisfaction algorithm for IDEAL is a simple work-list approach that propagates state

using the current constraint if enough variables are already assigned values, and otherwise delays

that constraint by putting it back at the end of the work-list [138]. This worst-caseO(n2) algorithm

is a less efficient implementation of local propagation.

22

m = (x1+x2)
2

m ← (x1+x2)
2

x1 ← 2m− x2

x2 ← 2m− x1

Figure 2.4: Predicate and three satisfaction methods for specification of multi-way constraint. In
practice, for linear numeric constraints the satisfaction assignments can easily be inferred. For
other domains where inverses are harder to compute, the methods may need to be explicitly pro-
grammed.

Multi-way constraints and solvers

One-way constraint solvers are exceptionally fast and easy to implement, but are restricted in

power. Multi-way constraints permit the constraint solver more freedom in choosing how to satisfy

a given constraint. ConsiderC3 from Figure 2.2:x2 = x1 + 6. A one-way constraint solver may

only changex2 in response to changes inx1, while a multi-way solver is free to setx1 ← x2 −
6 instead. Sketchpad [134] and Borning’s ThingLab [10] both use multi-way local propagation

solvers.

In ThingLab, constraints are specified by predicates and one or more satisfaction methods

as in Figure 2.4. A multi-way local propagation algorithm not only has to choose the order by

which to satisfy constraints, but also which method should be invoked for each. Figure 2.5 is the

(now largely undirected) multi-way constraint graph that corresponds to Figure 2.3. Visually, the

additional chore of the multi-way local propagation solver is to put arrowheads on each undirected

edge. Not all edges are undirected—C2, which constrainsx1 to the pointer position, can only

be satisfied by changingx1 so it remains represented as a directed edge.6 The selection of edge

directions corresponds to choosing a satisfaction method for each constraint. A solution to this

planning stage assigns directions to all edges such that no variable node has two incoming edges.

(Having two incoming edges would signify a conflict: two constraints are competing to affect the

same variable’s value.)

The earliest solving algorithm for multi-way constraint graphs, the aforementioned one-pass

6Even this restriction could be removed if the user’s mouse had a motor so it could move around under program
control!

23

x1

x2

rm
C1

C4C3

C2
position
pointer

Figure 2.5: Multi-way constraint graph for Figure 2.2.

method, propagates freedom instead of values. Variables only constrained by a single relationship

(i.e., those with only a single adjacent edge) are called “free” variables. These variables have

enough degrees of freedom that they can be satisfied no matter what the assignments to the other

variables are, so their assignment method is chosen to execute last. The edge is directed to select

the method that assigns to the free variable, and that method is added to an execution list. Then

the free variable node and planned-to-be-satisfied constraint edge are removed from the graph, and

the process repeats. In this way, an execution plan is created in reverse order of ultimate execution

[134, pp. 58–59] [12, p. 363]. The propagation of values popularized by widget toolkits (see

Section 2.4.2) is an extension introduced by Borning [10, p. 67] and independently discovered by

Steele and Sussman [133]. While propagation of freedom exploits nodes withenoughdegrees of

freedom so they can assigned values last, propagation of known state proceeds towards a solution

by finding nodes that havenodegrees of freedom so they can be assigned values immediately.

With the extra expressiveness of multi-way constraints comes a substantial complication: mul-

tiple possible plans may exist to solve the same system. If we removeC2 from Figure 2.2 there

are two possible plans for executing asm is changed (see Figure 2.6). This ambiguity is not just

an artifact of the solver, but is fundamental to the problem specification—it is under-constrained.

ThingLab had an ad-hoc notion of meta-constraints to control certain aspects of the solver’s behav-

ior. For example, the user textually orders the listing of the satisfaction methods to indicate which

assignment should be performed when multiple possibilities exist. This type of meta-constraint

was later replaced by the now-classic notion of a constraint hierarchy [17, 48] where constraints

may be specified at multiple levels of preference.7

7The DeltaStar solver shown in Figure 2.1 was designed simply to aid research in constraint hierarchies by parame-

24

x1

x2

rm

x1

x2

rm
C1

C4C3
C1

C4C3

Figure 2.6: Two possible plans for executing Figure 2.5 asmchanges.

“Blue” is a multi-way local propagation solver that respects constraint hierarchies by finding

a best solution [49]. What is optimal is defined in terms of comparators. Blue uses the locally-

predicate-better notion to compare two solutions and determine which is best. A locally-predicate-

better solution satisfies all the required constraints and successively weaker constraints at least as

well as its competing solutions through a given level in the hierarchy, and satisfies at least one

more constraint at that level. For example, by the locally-predicate-better comparator, it is more

desirable to have a solution that satisfies all required constraints and a singlestrong constraint

rather than one that satisfies all the required constraints and ten (or a million)weak constraints.

The comparator is “local” in that it compares solutions constraint by constraint, instead of com-

puting some global measure of how satisfied all the constraints are; the comparator is “predicate”

in that all that matters is whether the constraint was satisfied or not, without regard to how closely

the constraint is satisfied (i.e., the error). The locally-predicate better solution has the advantage

that it permits the use of a greedy algorithm for solving.

“DeltaBlue” is a suitably-named incremental version of the Blue algorithm. It maintains and

incrementally updates a solution graph which represents a plan for recomputing variables’ values

to satisfy all satiable constraints in a constraint hierarchy subject to the locally-predicate-better

comparator.

The key feature of DeltaBlue is its annotating of variable nodes in the constraint graph with

their “walkabout strength.” The walkabout strength of a variable is the weakest upstream constraint

that could be un-enforced (i.e., removed or re-directed in the solution graph) to permit a different

constraint to change the variable’s value. Figure 2.7 shows a simple example from Freeman-

terizing a constraint-hierarchy by an arbitrary flat solver [48].

25

Benson [49, p. 58]. In particular, variableD’s walkabout strength isweak because constraintC2 is

weak, thus denoting that DeltaBlue would only need to break a weak constraint in order to permit

another (stronger) constraint to assign toD. VariableC’s walkabout strength isstrong despite

being the output of arequired constraint because its input variableA’s walkabout strength is only

strong; weaker walkabout strengths propagate through stronger constraints.

A

B

C DC1 C2
req’d weak

strong

required

strong weak

Figure 2.7: Example of walkabout strength assignments to variables. Constraint strengths are be-
low the constraint, current variable walkabout strength assignments are in italics above the variable
nodes.

Walkabout strengths encapsulate the global knowledge needed to permit incrementally modi-

fying locally-predicate-better solution plans across constraint additions and removals. The key cor-

relation between walkabout strengths and solutions involves the notion of ablocked constraint—a

constraint that is unsatisfied but has a strength stronger than the walkabout strength of a potential

output variable. The blocking constraint lemma states:

If there are no blocked constraints, then the set of satisfied constraints represents a

locally-predicate-better solution to the constraint hierarchy [49, p. 60]

This blocking lemma suggest the algorithm’s strategy—the propagation of conflict. DeltaBlue’s

incremental maintenance of the constraint graph plan is straightforward [49, 128, 125]. The al-

gorithm’s complexity remainsO(V + C) (as was simple local propagation). As mentioned before,

assigning new values given the same configuration (i.e., execution) is especially fast (onlyO(C)

since at most one method is fired per constraint).

26

Extensible local-propagation solvers

There are three main limitations of DeltaBlue: 1) it can handle only functional constraints which

compute a single value for a variable (e.g., it cannot manage inequalities); 2) it cannot solve cyclic

constraint graphs; and 3) all methods must have exactly one output variable. The “Indigo” solver

[11] relaxes the first restriction by propagating bounds on value assignments instead of specific

values—Indigo binds variables to intervals. This generalization requires the solver to fire multiple

interval tightening methods instead of just a single method performing a value assignment. Thus,

if the constraintsa ≤ 20 anda ≥ 5 are applied in that order, Indigo will first tightena interval

to (−∞, 20] and then to [5, 20]. These extra method invocations increase the complexity of the

Indigo algorithm toO(MC), whereM is the maximum number of variables related by a constraint.

The second and third restrictions are relaxed by the enhanced solvers described below.

SkyBlue [126] is a multi-way, multi-output solver. Multi-output functions are useful for de-

composing compound data structures and maintaining interacting constraints across multiple vari-

ables. The standard example is a two-input two-output constraint relating polar and Cartesian

coordinates of a point.

As previously mentioned, cycles in the constraint graph correspond to simultaneous interac-

tions of variables in the underlying problem. For example, the two constraints:C1 : x + y = 6 and

C2 : x− y = 2 correspond to the bi-partite constraint graph in Figure 2.8. Because both constraints

relate both variables, the graph is cyclic. The primary shortcoming of all the local propagation

solvers mentioned above is that they are able to reason about individual constraints only in isola-

tion. When cycles appear in the constraint graph, more sophisticated algorithms must handle the

more complex interactions. Various possible sub-solver architectures can be used to manage those

complexities.

Another potential cause of cycles is the existence of redundant constraints—although such

redundancies can often be eliminated by carefully analyzing the system, forcing the constraint

specifier (often the end-user for interactive graphical applications) to avoid redundancies is unac-

ceptable. Alternate views provide another approach to avoiding problems caused by circularities

[62, p. 27].

Cycles of linear numerical equality constraints correspond to systems of simultaneous linear

27

y

x C1

C2

Figure 2.8: Bi-partite constraint graph showing constraints and the variables they relate.

equations, which can be solved by algorithms such as Gaussian elimination (see Section 2.4.4).

The framework of a local propagation solver is one approach to handling cycles. The first chal-

lenge for the local propagation solver is in recognizing the cycles and invoking domain-specific

sub-solvers on the connected subgraphs that local propagation is incapable of solving. As cycle-

handling local propagation solvers find subgraphs with cycles, the solvers collapse those nodes into

single meta-nodes and use the solution type of the enclosed constraints to assign a domain-specific

sub-solver the task of assigning a valuation to the variables contained in the clumps. For the sub-

solver to perform its task, it might need to assign values to multiple variables along the frontier

where a collapsed meta-node interfaces with the full method graph. Thus, the main solver must

permit multiple outputs for a single constraint (the aforementioned necessary but not sufficient

condition for cycle-solving local propagation algorithms).

The SkyBlue solver’s main contribution is the relaxation of the single-output restriction of

DeltaBlue. In the presence of multi-output constraints, walkabout strengths are no longer powerful

enough to capture the relevant global information. The SkyBlue algorithm instead computes walk-

bounds—any strength equal to or weaker than the walkabout strength—and maintains walkbounds

incrementally as constraints are added and removed. The algorithm then computes the solution

graph by building method vines using a backtracking algorithm [126]. Walkbounds and other

optimization techniques help to reduce the needed backtracking substantially, but not completely.

The backtracking makes SkyBlue’s complexity exponential in the worst case.

QuickPlan [139] is similar to SkyBlue but uses propagation of degrees of freedom (instead of

propagation of conflict), searching for free variables and selecting methods to execute in reverse

28

order. As it encounters conflicts planning its solution, it retracts the weakest strength constraint

from the graph, saving it on a priority queue (ordered by strength). After the sequence of elimi-

nation and retraction steps, QuickPlan tries to re-add the retracted constraints in decreasing order

of strength. The QuickPlan algorithm hasO(C2) worst case complexity, it typically runs in linear

time (recall that the single-output solver, DeltaBlue, is a linear-time algorithm).

DETAIL [79] is yet another multi-output cycle-solver-capable local propagation algorithm. Its

algorithm is similar to the above, and it embeds three sub-solvers: one for locally-predicate-better

constraints, one for least-squares-better linear equality systems, and one that uses a physically-

based spring model (similar toGLIDE [122]).

Ultraviolet, a meta-solver for invoking sub-solvers, first partitions the top-level constraint

graph, and then solves the connected subgraphs independently while communicating through

shared variables. Unlike SkyBlue, Ultraviolet is not a solver itself, but only coordinates the ac-

tions among its sub-solvers which include Blue (for functional local propagation), Indigo (for nu-

meric inequalities), Purple (for simultaneous linear equalities), and Deep Purple (a partial solver

for simultaneous linear equalities and inequalities; cf. QOCA and Cassowary in Section 2.4.4).

One key advance of Ultraviolet was determining the order of invocation of sub-solvers to support

constraint hierarchies. The outer loop for the satisfaction algorithm is over decreasing strengths of

constraints: each subsolver first handles required constraints, then each deals with all of the strong

constraints, and so on. Thus, each sub-solver is potentially invoked multiple times [13, p. 7].

Partitioning of the constraint graph is not only useful for increasing expressiveness but also for

improving performance. The more sophisticated algorithms that support multi-output and cycles

all have super-linear complexity; thus, they may benefit from being subdivided into smaller inde-

pendent problems. Some evidence suggests that constraints in real applications tend to be modular,

and therefore amenable to this kind of decomposition [141].

Geometric Degrees of Freedom Analysis

Kramer’s Geometric Constraint Engine (GCE) [90] exploits symbolic analysis of geometric de-

grees of freedom which insulates the technique from the low-level representation and equations

and preserves the intuitive nature of the underlying problem. GCE’s solver is given the task of

29

constructing a “metaphorical assembly plan” (MAP) to describe how to satisfy a set of geometric

constraints. Although at first examination the technique seems novel and distinct from the other

algorithms discussed, at its essence, it is simply a local propagation algorithm. GCE proceeds by

searching for free geometric entities, and selecting transformations to assign positions to those en-

tities. It constructs the MAP in reverse order of ultimate execution, exactly as Sutherland’s original

local propagation algorithm for Sketchpad did. (In the forward direction, this can be seen as the

propagation of rigidity; Brunkart calls this method contraction [24].)

Kramer’s propagation of geometric degrees of freedom is complicated by its need to infer the

appropriate geometric transformation to fix (i.e., make rigid) a specific previously-free motion. In

a simple local propagation system, this requires only the evaluation of a pre-specified function,

perhaps with some simple inference for multi-way numerical constraints. The planning for the

MAP [8] and the need to maintain a numerical model along with the symbolic geometric model

distinguish GCE’s geometric degrees of freedom analysis from other forms of local propagation.

Local propagation strengths and weaknesses

Maximal efficiency and the ability to handle constraints over arbitrary domains are the primary

strengths of local propagation algorithms. As previously mentioned, the key weakness of local

propagation algorithms is their inability to consider multiple constraints simultaneously. These cy-

cles must be managed by domain-specific techniques; more sophisticated local propagation solvers

manage sub-solvers to provide this capability.

2.4.3 Iterative numeric solvers

Iterative numeric solvers have been used in constraint solving systems ever since Sketchpad. Their

primary strength is that they are very general and thus widely applicable. In particular, numeric

techniques permit solving simultaneous non-linear constraints (such as maintaining equal lengths

or distances) which arise often in geometric applications. Sutherland’s Sketchpad exploits the

representation of constraints directly in terms of the error, thus reducing constraint satisfaction

to the well-studied problem of functional minimization. However, since iterative optimization

techniques are often slow (their computational complexity is generally at least quadratic and the

30

constant factors are relatively large), they have not been used much for interactive applications.

Sutherland’s relaxation technique is only used when his one-pass local propagation algorithm fails

to find a solution [134, p. 57]. ThingLab also relies on relaxation as a backup technique when

faster methods fail [10, p. 68–69]. This approach may gain in importance as computing hardware

becomes faster and faster.

Recognizing that constraint solving via iterative numeric techniques can be viewed as classical

functional optimization opens up a world of techniques [45]. Relaxation is simply an iterative

hill climbing (or equivalently a gradient, or steepest descent) algorithm. These optimizers are

reasonably good at finding a local minimum independent of the initial guess, but converge only

linearly to the local minimum. More importantly, the technique only finds alocal minimum,

ignorant of the global search space.

Other systems’ solvers, including Juno [112] and Juno-2 [76], use (multidimensional) Newton-

Rhapson iteration to exploit derivative information. Some systems use automatic differentiation

to relieve the user from specifying derivatives [58], while others simply limit the set of func-

tions known to the underlying solver. Juno-2’s solver performs numerous optimizations, including

propagation of known state, unification of pair constraints, unpacking pair constraints to primitive

constraints (thus separating numeric constraints from non-numeric constraints), and re-packing

(reducing the number of constraints and unknowns before passing them along to the Newton-

Rhapson solver). Newton-Rhapson converges quadratically (faster than gradient descent), but re-

lies on a sufficiently accurate initial guess and an invertible Jacobian.8 The Levenberg-Marquardt

method [25] dynamically weights a combination of Newton-Rhapson and gradient descent, per-

mitting solvers to exploit the faster convergence of Newton-Rhapson once in the proximity of a

local minimum; this hybrid solver is used in maintaining the constraints in the Chimera editor

[92, 93].

Besides being relatively inefficient, iterative numeric solvers pose other problems for constraint

solvers for interactive graphical applications. Because of their iterative nature, it is sometimes

difficult to tell if convergence is just slow or if the system is truly unsatisfiable. Also, because the

methods are local optimizers, the solution converged upon depends on the initial solution. Slight

8The Jacobian is the matrix of partial derivatives.

31

changes in the initial conditions can result in finding radically different solutions. This behavior

may not be what the end-user expects.

Difficulty of implementation is yet another hindrance to the spread of iterative solving tech-

niques. Coding iterative numeric constraint solvers is not for the numerically-challenged. Various

numerical stability problems (e.g., singular or nearly-singular matrices) crop up repeatedly. Only

with an arsenal of carefully combined sophisticated algorithms (e.g., singular value decomposition

can be useful for under-constrained systems in place of Gaussian elimination) can the techniques

perform computations robustly. Bramble and its “Snap-Together Mathematics” package provides

some of these tools in the context of Whisper—an extensible Scheme-like language [54, 58].9

One of the more promising uses of iterative techniques is exemplified by theGLIDE interactive

graph layout system [122].GLIDE gives up on the difficult problem of global optimization of

a graph layout. Instead, it focuses on exploiting the solver’s strength—local minimization—and

combining that with the interactive user’s strength—global layout. To make this combination most

useful, the numerical solver is physically-based, using a generalized spring model. The visual

organization features (see Section 2.3.2) are mapped to sets of spring-like objects10 among nodes.

The energy minimization function uses varying spring-constants to provide preferential constraint

satisfaction similar to the weighting of errors in a single level of a constraint hierarchy (as in QOCA

[100, 18]).

GLIDE’s iterative solver then simulates its physical model, trying to minimize the energy of

the system. It uses Euler’s method to compute the position and momentum of each node. Dur-

ing solving iterations, the configuration is animated, and a kinetic energy threshold terminates the

iterations once the system is stable, until the next user interaction. The animation reinforces the

spring metaphor and aids the user in establishing an accurate mental model. The collaborative ap-

proach of constraint solvers augmenting user interaction through physical models and understand-

able metaphors seems to address many of the difficulties iterative techniques otherwise experience.

Differential methods are another physically-based technique; they are discussed in Section 2.4.5.

9SCWM uses a similar extensible language called Guile (Chapter 4).

10They are not physically-precise springs (i.e., they can violate Hooke’s Law) because some may have only a repulsive
force.

32

Combinations of these physically-based approaches may prove interesting.

The constrained graph layout solver [71] takes a non-interactive approach, and attempts to

perform global optimization of a spring-model energy function (a simplified aesthetic criterion)

subject to arbitrary linear equality and inequality constraints. The first cost function considered,

Model A, is a non-polynomial metric suggested by Kamada [71, p. 221]. Because computing

partial derivatives for this function is expensive and because the second-derivatives are not con-

tinuous, Marriott and He propose Model B, a polynomial approximation to the first model. Their

expectation is that the smoothness in the partial derivatives will permit better behaved solutions.

The primary limitation of Model B was weakening of inter-node repulsive forces; this can result

in layouts in which nodes overlap.

Marriot and He’s layout algorithm is based on an active-set technique [45], which is useful

for optimizations constrained by inequalities. The active set method is also used by QOCA [18],

and it is related to the simplex algorithm (see Section 2.4.4). As with simplex, finding an initial

feasible solution for the active set method for graph layout requires additional work. Kamada’s

unconstrained algorithm simply puts then nodes onto a regularn-polygon. Marriott and He aug-

ment this to find the least-squares closest solution which is feasible—this is a quadratic (and thus

convex) programming problem, so any of the numerous applicable techniques suffices.11 Their

algorithm, while only of polynomial complexity, is slow on even small problems (a twenty node

graph requires 33 seconds of computation on a 486DX/2-66).

Because of their generality, iterative numeric techniques are a useful method of last resort,

and some of their uses for physical simulations seems promising. Additionally, these techniques

may benefit from advancements in computing power that could make their asymptotically slower

algorithms more practical.

2.4.4 Direct numeric solvers

Direct numeric constraint solvers avoid the difficulties of iterative numeric solvers by attempting to

find an exact solution through symbolic manipulation of the constraint equations. As with iterative

11Tree layout as formulated by their Model C is also only a quadratic programming problem. Again, Marriott and He
use a variant of the active set method.

33

numeric solvers, the domain for constraints is restricted to real numbers. Additionally, to make

solving manageable, direct numeric solvers further restrict the constraints they allow. The most

common restriction is to permit only linear equality relationships—linear systems of equations

have numerous applications, and there exist efficient algorithms for solving them.

The simplest algorithm for solving simultaneous linear systems of equalities is Gaussian elim-

ination. In the matrix form of the equations, Gaussian elimination corresponds to computing the

row-reduced form. From this triangular form, a value for a variable can be read off a row directly,

then that variable’s value can be substituted into the other equations, and the process repeats.

This back-substitution corresponds to the local-propagation solver’s behavior during the execu-

tion phase, while its planning phase corresponds to choosing the ordering of rows for the back-

substitution. Computing the row-reduced form allows simultaneous systems (i.e., those involving

cycles in the constraint graph) to be handled. If there are no cycles, then Gaussian elimination is

unnecessary and simple propagation of known-state (as local propagation solvers do) suffices.

Gaussian elimination only finds a unique solution when a system is fully specified (i.e., the

corresponding matrix is of full rank) as with systems ofn independent equalities withn variables.12

In constraint systems, however, under-constrained systems are far more common.

Simplex algorithm

As mentioned earlier, under-constrained systems require a means of disambiguating possible solu-

tions. As we have seen, constraint hierarchies are a useful way of declaratively specifying preferred

solutions, and they can be implemented by optimizing a global error metric. Dantzig’s famous sim-

plex algorithm is a simple technique for optimizing a linear function subject to linear equality and

inequality constraints [101, pp. 63–72]. Although simplex works directly only on equalities, an ar-

bitrary inequality can be handled using a non-negative slack variable. For example,x≥ y becomes

x = y + s1, where the slack variables1 ≥ 0. This last non-negativity restriction ons1 applies to all

variables in the simplex tableau (the matrix on which the algorithm operates).

The simplex algorithm is split into two phases. Phase I finds an initial solution to the con-

12Independence assures that rows provide useful information; rows that are linear combinations of other rows are not
helpful in constraining the system.

34

straints, and phase II finds an optimal solution. Consider the four constraints:

1≤ x ∧ x≤ 3 ∧ 0≤ y ∧ 2y− x≤ 3

These inequalities correspond to the darkened region of Figure 2.9. Since the optimization

function is linear, its optimal value must occur at a vertex of the enclosing polygon. In terms of the

picture, phase I finds any of those vertices (called a basic feasible solution), while phase II involves

pivoting the system to move between adjacent vertices, systematically and efficiently searching for

the optimal solution. See Section 3.2.2 for details.

x

y

1 2 3

3

2

1

Figure 2.9: Simplex optimization problem [101, p. 64]

QOCA and Cassowary: Incremental simplex

In Borning’s spectrum of solvers, a variant of the simplex algorithm is dubbed “Orange,” and

an incremental version, DeltaOrange, is mentioned as a research direction [49]. Cassowary and

QOCA are two variants of an incremental simplex algorithm [100, 18].

As one would imagine, Cassowary and QOCA are very similar to the batch simplex algo-

rithm. Both lift the restriction of non-negativity on all variables by using two tableaus: an unre-

stricted tableau and a restricted, simplex tableau. Only the variables in the simplex tableau have

the non-negativity restriction.13 Cassowary and QOCA are incremental in that they permit adding

13Because the optimization phase requires this restriction to find adjacent vertices, that phase of the algorithm is
restricted to only the simplex tableau.

35

and removing constraints while maintaining basic feasible solved form. Both algorithms proceed

identically until the optimization (of the original problem) phase. Adding a constraint involves

re-expressing inequalities as equalities, using an artificial variable to represent the error, and mini-

mizing that error in the added equation. If the error cannot be minimized to zero, the new constraint

is inconsistent and an exception is thrown. This process is essentially an incremental version of

simplex’s Phase I.

Removing a constraint is a bit more complicated because the effects of a single equation are

spread throughout the tableaus as they are manipulated. This difficulty is overcome by creating a

distinct “marker” variable for each constraint added to the tableau.14 A marker variable indicates

the effect of a constraint on the tableau, and that constraint can be removed by pivoting to make

the marker variable basic, and then removing that row. Clearly, removing a constraint cannot make

the system infeasible, so the tableau remains in basic feasible solved form.

The final incremental operation the algorithms provide is the ability to change the constant

of certain constraints. Often this is done for simple constraint equations which track, e.g., pointer

movement. In Cassowary, these kinds of constraints are called “edit constraints.” Usually changing

an edit constraint’s value requires only changing specific constants in the tableau. Occasionally, the

change will make the system infeasible; visually, this occurs when graphical objects first bump up

against or leave other objects. The bumping point corresponds to a new configuration at an optimal

but infeasible solution (i.e., it is an optimal pointoutsideof the shaded region in Figure 2.9). When

this occurs, the dual simplex algorithm is used to restore feasibility—to move from an infeasible

and optimal solution to a feasible and still optimal solution. The efficiency of this operation is

essential for interactive graphical applications to maintain fluid animation while the user directly

manipulates the system.

The primary difference between QOCA and Cassowary is in how they choose among possible

solutions to the constraint hierarchy—which comparator they use. Cassowary uses the locally-

error-better metric, while QOCA uses the globally-least-squares-better comparator.

To find locally-error-better solutions, Cassowary computes an error for each non-required con-

14In implementations, other variables guaranteed to appear only in a single equation (e.g., slack variables) are over-
loaded to serve as marker variables.

36

straint equation. Since the error can be either positive or negative, we need two error variables

associated with each equation:δ+ and δ−. Two variables are required because the simplex al-

gorithm’s non-negativity restriction on variables would otherwise prevent the representation of

negative errors. The optimization function is then chosen to be a weighted sum of these error

variables. The weighting is determined by the preferences of the constraints using a constraint hi-

erarchy specification. To ensure we satisfy one strong constraint in preference to numerous weaker

constraints, the objective function uses symbolic weights and lexicographical ordering. Generally,

weak stay constraints are added to force each variable to remain where it is; these constraint values

are then updated after each optimization of the system so that future optimizations will keep the

variables’ values the same unless they must be altered by some stronger constraint.

Instead of using preferences on constraints to control the optimization function, QOCA uses

a global least-squares better comparator. QOCA’s goal is to minimize the weighted sum of the

squares of the error of each variable relative to its desired position. For this technique, each variable

has a preferred location (analogous to the stay constraint for Cassowary) and a numerical weight

of how strong the preference is. QOCA then must solve the quadratic programming problem of

minimizing
∑

wiδ
2
i , wherewi is the weight of theith variable, andδi is the error from its effectively

desired location.

Convex quadratic programming is well-studied and two algorithms have been considered for

use by QOCA: the active set method (currently used), and linear complementary pivoting. Both

algorithms are related to the simplex technique.

The active set method [45] is an iterative technique that maintains an active set of the equality

constraints and the subset of the inequalities that are tight in the sense that their slack variables

have value 0 in the current solution. At each step in the iteration, we either move as far towards an

optimal solution as possible while maintaining feasibility relative to some new inequality that we

add to the active set, or we move more toward optimality by removing a constraint from the active

set. When the active set can no longer by modified, we are at an optimal, feasible solution [18].

Linear complementary pivoting is another approach to solving convex quadratic optimization

problems. This technique works by first introducing dual slack variables and dual variables. Each

of these new variables is complementary to an existing variable in the primal (original) problem:

37

the dual slack variables to the primal parametric variables and the dual variables to the primal

basic variables. Then we augment the tableau of the primal problem with equations relating the

dual slack variables to the sum of partial derivatives of the objective function with respect to the

parametric variables and the dot product of rows of the primal problem with dual variables. By

maintaining the property that complementary variables may not both be positive while pivoting this

combined problem repeatedly, we achieve a feasible and optimal solution to the primal problem.

Because the partial derivative of the quadratic objective function is linear, we can use simplex as a

solution technique (this is similar to Gleicher’s differential method technique—see Section 2.4.5).

Borning et al. provide an illustrative example [18].

QOCA gives up the ability to express arbitrary constraints at varying preferences. It instead

guarantees a variable-weighted least-squares-better solution to the under-constrained problem.

This comparator is especially useful in geometric applications since it tries to place objects as

close as possible to where they are desired to be. The weighting function can be used to control

which objects should be placed closest to their desired positions. QOCA’s least-squares comparator

also comes at the price of using additional numerical techniques (computing the derivative sym-

bolically) and further implementation complexity. Performance for both QOCA and Cassowary is

good, handling re-solves (i.e., edit constraint changes) of systems of around 600 constraints and

700 variables in under 30ms on average [100].

One of the shortcomings of Cassowary and QOCA is that the performance of a re-solve can

vary dramatically. In the common case, it is very fast, but a pivot of the tableau can result in a

noticeable delay and an interaction that has an undesirable “jerky” quality. Another approach to

solving systems can avoid this difficulty: one can instead compile constraint-free code for a spe-

cific interactive system that then runs very quickly and predictably [70]. This possibility trades

generality for performance and is useful in applications where the constraint system is static and

known well in advance (e.g., delivery of a geometric-demonstration applet across the web). An-

other benefit of compiling constraints is that the constraint solver need never be distributed, thus

avoiding sharing potentially proprietary technology and simplifying distribution of the software.

38

2.4.5 Differential methods

Gleicher’s Bramble drawing program permits quadratic constraints to be expressed and solved

efficiently by using an approach he calls differential methods. The differential method technique

is enabled by limiting the problem only tomaintenanceof constraints thatalready hold. All

other systems discussed use a “specify-then-solve” methodology where the solver is responsible

both for producing an initial solution and for maintaining that solution as the system is perturbed.

Instead, Bramble requires that the user initially establish the desired relationship before adding

the corresponding constraint to the solver. Via augmented snap-dragging, the user is aided in

establishing a desired relationship while simultaneously adding the constraint to be maintained

(see Section 2.3.1).15

Offloading the establishment of the initial configuration from the constraint solver simplifies

the solver’s task—instead of maintaining relationships regarding the absolute positions of objects,

differential manipulation relates themotionof objects. Since the motion of an object is described

by its derivative with respect to time, quadratic relationships of positions are reduced to linear re-

lationships of derivatives. Maintenance of linear constraints is a far easier job (see Section 2.4.4).

The linear systems are solved to minimize the derivative of the configuration. The one added step

in Briar is to solve an ordinary differential equation after solving for the unknown time deriva-

tive; Euler’s method is one simple technique for computing an absolute position from the initial

conditions and the derivative.16

Another key benefit of differential manipulation is that it permits choosing an underlying rep-

resentation of an object’s state independent of the user-interface controls for that object. For Gle-

icher’s Through-the-Lens Camera Control (TLCC), he expresses the three-dimensional location

and orientation of the camera via quaternions [130] which are much better behaved numerically,

but far less intuitive to the user, and thus unsuitable for exposing directly [57]. Gleicher has also

applied differential manipulation techniques to character animation systems [56].

15Adding an arbitrary not-already-satisfied constraint to the system may be confusing to the user if enforcing the
constraints requires a global rearrangement of the layout. Additionally, by knowing that the constraint is already
satisfied, the solver need not worry about over-constrained systems [59].

16Animus also uses differential equations for the specification of continuous motion of objects being animated [12,
40].

39

2.5 Summary

Interactive graphical applications have explored using constraints for over thirty-five years, yet

none are completely successful, and numerous challenges remain. Two important problems not

yet well-addressed and not considered in-depth here include debugging constraints and reuse of

solvers. Debugging constraint systems is challenging, and must be made easier for users [55, 124].

Constraint solving libraries must be developed so that the implementation effort for application

programmers is minimized—software engineering research on system architectures [103] and

solvers that stress simple and efficient17 interfaces [100] can be exploited to improve this situa-

tion. The Cassowary toolkit is one attempt to fill this gap (Chapter 3).

This chapter surveys several interactive graphical application domains that use constraint sys-

tems. Table 2.1 shows that several kinds of constraints are especially relevant for geometric appli-

cations, but that the constraints provided by an application are highly influenced and restricted by

its underlying solver. Thus, increasing expressiveness of constraint solvers is a primary concern.

The fundamental challenge is to not sacrifice performance while expanding the class of constraints

that solvers handle. Figure 2.1 relates all of the solvers surveyed here by their techniques and

expressiveness. Understanding the evolution of techniques, recognizing the similarities among the

approaches, and considering novel combinations of various systems exposes many areas for future

work.

Extensible solvers are a useful and flexible mechanism for exploiting domain-dependent op-

timizations while retaining generality. In particular, Ultraviolet [13] provides a useful framework

for embedding solvers, but does not have an integrated, fully general linear equality and inequality

sub-solver.

Physically-based systems such as the spring-layout ofGLIDE [122] and differential methods of

Briar [59, 57] demonstrate advantages of using simulation-based solvers. Animating other solvers’

solution processes may be beneficial to creating a seemingly more responsive system, and provid-

ing a more understandable solution due to the physical metaphor. The collaborative aspect of these

17The Janus In Motion (JIM) application communicates with its Parcon constraint solver via Unix named pipes.
Although this design certainly decouples the constraint solver from the application, the performance cost is hard to
accept in an interactive application [65].

40

two systems is also instructive: constraint solving technology need not do everything. Users are

good at direct manipulation and interactive systems can permit leveraging those abilities.

Interactive graphical applications can benefit dramatically from fast, expressive, understand-

able, and reusable constraint solvers. Improving constraint satisfaction algorithms in these direc-

tions is important if we are to fully exploit the benefits that the declarative nature of constraints

can provide.

41

Chapter 3

THE CASSOWARY CONSTRAINT SOLVING ALGORITHM AND TOOLKIT

This chapter describes a newly-developed constraint solving algorithm called “Cassowary.”

The algorithm was designed principally by Alan Borning and Peter Stuckey, and much of this

chapter is a heavily revised, corrected, and updated version of their original description [18]. The

design and implementation of the re-usable toolkit for embedding the solver into real-world appli-

cations is a contribution of this dissertation.

3.1 Introduction

Linear equality and inequality constraints arise naturally in specifying many aspects of user in-

terfaces, especially layout and other geometric relations. Inequality constraints, in particular, are

needed to express relationships such as “inside,” “above,” “below,” “left-of,” “right-of,” and “over-

laps.” For example, if we are designing a Web document we can express the requirement that

figure1 be to the left offigure2 as the constraintfigure1.rightSide ≤ figure2.leftSide.

In a system used for graphical layout, it is important to be able to express constraints that are

just preferences as well as constraints that are hard requirements. For example, we must be able to

express a preference for stability when moving parts of an image: things should stay where they

were unless there is some reason for them to move. A second use for preferred constraints is to

cope gracefully with invalid user inputs. For example, if the user tries to move a figure outside of

its bounding window, it is reasonable for the figure just to bump up against the side of the window

and stop, rather than causing an exception. A third use of non-required constraints is to balance

conflicting desires, for example in laying out a graph.

Efficient techniques are available for solving such systems of linear constraints if the constraint

network is acyclic. However, in trying to apply constraint solvers to real-world problems, we find

that the collection of constraints is often cyclic. Cycles sometimes arose when the programmer

42

unwittingly added redundant constraints—the cyclescouldhave been avoided by careful analysis.

However, the analysis is an added burden on the programmer. Further, it is clearly contrary to the

spirit of the whole enterprise to require programmers to be constantly on guard to avoid cycles and

redundant constraints. After all, one of the goals in providing constraints is to allow programmers

to state what relations they want to hold in a declarative fashion, leaving it to the underlying system

to enforce these relations. For other applications, such as complex layout problems with conflicting

goals, cycles seem unavoidable. A solver that can handle cycles of both equality and inequality

constraints is thus highly desirable.

3.1.1 Constraint hierarchies and comparators

Since we want to be able to express preferences as well as requirements in the constraint system,

we need a specification for how conflicting preferences are to be traded off.Constraint hierar-

chies [14] provide a general theory for the semantics of constraint systems (Section 2.2). In a

constraint hierarchy each constraint has a strength. Therequired strength is special, in thatre-

quired constraints must be satisfied. The other strengths all label non-required constraints. A

constraint of a given strength completely dominates any constraint with a weaker strength—the

strong constraint must be satisfied as well as possible before the weaker constraint can have any

effect on the solution. In the theory, acomparatoris used to compare different possible solutions

to the constraints and select among them.

Within this framework a number of variations are possible. One decision is whether we only

compare solutions on a constraint-by-constraint basis (alocal comparator), or whether we take

some aggregate measure of the unsatisfied constraints of a given strength (aglobal comparator). A

second choice is whether we are concerned only whether a constraint is satisfied or not (apredicate

comparator), or whether we also want to know how nearly satisfied it is (ametric comparator).

Constraints whose domain is a metric space such as the real numbers can have an associated error

function. The error in satisfying a constraint is 0 if and only if the constraint is satisfied, and

becomes larger the less nearly satisfied the constraint is.

For inequality constraints it is important to use a metric rather than a predicate compara-

tor [11]. Thus, plausible comparators for use with linear equality and inequality constraints are

43

locally-error-better, weighted-sum-better, andleast-squares-better. For a given collection of con-

straints, Cassowary finds a locally-error-better or a weighted-sum-better solution. (The related

QOCA algorithm finds a least-squares-better solution, which strongly penalizes outlying values

when weighing constraints of the same strength [18].) The locally-error-better comparator is more

permissive in that it admits more solutions to the constraints. Also, it is generally easier to develop

efficient algorithms to find a locally-error-better solution because these can often be found using

greedy algorithms.

3.1.2 Adapting the simplex algorithm

Linear programming is concerned with solving the following problem:

Consider a collection ofn real-valued variablesx1, . . . , xn, each of which is con-

strained to be non-negative:xi ≥ 0 for 1 ≤ i ≤ n. Suppose there arem linear

equality or inequality constraints over thexi , each of the form:

a1x1 + . . . + anxn = b,

a1x1 + . . . + anxn ≤ b, or

a1x1 + . . . + anxn ≥ b.

Given these constraints, find values for thexi that minimize (or maximize) the value

of theobjective function

c + d1x1 + . . . + dnxn.

This problem has been heavily studied for the past fifty years. The most commonly used

technique for solving it is the simplex algorithm, developed by Dantzig in the 1940s, and there are

now numerous variations of it. Unfortunately, existing implementations of the simplex algorithm

are not readily usable for user interface applications.

The principal difficulty is incrementality. For interactive graphical applications, we need to

solve similar problems repeatedly, rather than solving a single problem once. To achieve interactive

response times, fast incremental algorithms that exploit prior computations are needed. There are

two common cases that algorithmic changes should try to improve. First, when moving an object

44

with a mouse or other input device, we typically represent this interaction as a one-way constraint

relating the mouse position to the desiredx andy coordinates of a part of the figure. For each

screen refresh, we must re-satisfy the same collection of constraints while varying only the mouse

location input. The second common need that incremental algorithms can optimize is when editing

an object in a complex system. Ideally, when adding or removing a small number of constraints,

we would like to avoid re-solving the entire system. Although the performance requirements for

this case are less stringent than for the first case, we still wish to increase performance by reusing

as much of the previous solution as possible.

Another important issue when applying simplex to user interface applications is defining a

suitable objective function. We must accommodate non-required constraints of different strengths

which is analogous to multi-objective linear programming problems. Also, the objective function

in the standard simplex algorithm must be a linear expression; but the objective functions for the

locally-error-better, weighted-sum-better, and least-squares-better comparators are all non-linear.

For Cassowary, we avoid the least-squares-better comparator and use a quasi-linear objective func-

tion for the weighted-sum-better comparator (Section 3.2.3).

Finally, a minor issue is accommodating variables that may take on both positive and negative

values, which is generally the case in user interface applications. (The standard simplex algorithm

requires all variables to be non-negative.) Here Cassowary adopts efficient techniques developed

for implementing constraint logic programming languages (Section 3.2.1).

3.1.3 Overview

I describe the Cassowary algorithm for incrementally solving linear equality and inequality con-

straints for the locally-error-better and weighted-sum-better comparators mentioned above. In

Section 3.2, I present the algorithm’s techniques for incrementally adding and deleting constraints

from a system of constraints kept inaugmented simplex form, a type of solved form. I also explain

the procedures for incrementally solving hierarchies of constraints when an object is moved.

The Cassowary algorithm originally had a proof-of-concept implementation in Smalltalk. Now

my Cassowary Constraint Solving Toolkit includes that code, along with C++, and Java ver-

sions [3]. The library performs very well, and a summary of results is given in Section 3.5. The

45

algorithm is straightforward, and a re-implementation based on this chapter is reasonable, given

a knowledge of the simplex algorithm. Section 3.3 contains details of my implementations of

the Cassowary algorithm, and Section 3.4 discusses some subtleties of the comparators used for

optimization.

3.2 Incremental simplex

I now describe Borning et al.’s incremental version of the simplex algorithm, adapted for the Casso-

wary algorithm for interactive graphical applications. The description will use a running example,

illustrated by the diagram in Figure 3.1.

xm xrxl

0 10050−10

Figure 3.1: Simple constrained picture

The constraints on the variables in Figure 3.1 are as follows:xm is constrained to be the mid-

point of the line fromxl to xr , andxl is constrained to be at least 10 units to the left ofxr . All

variables must lie in the range -10 to 100. (To keep the presentation manageable, we deal only

with the x coordinates. Adding analogous constraints on they coordinates is straightforward but

would double the number of constraints in the example.) Sincexl < xm < xr in any solution, we

simplify the problem by removing the redundant bounds constraints. However, even with these

simplifications the resulting constraints have a cyclic constraint graph and cannot be handled by

methods such as Indigo [11].

The constraints described above are

2xm = xl + xr

xl + 10 ≤ xr

xl ≥ −10

xr ≤ 100

46

3.2.1 Augmented simplex form

Suppose we wish to minimize the distance betweenxm andxl , or in other words, minimizexm− xl .

(This simple objective function is just used as an initial example; a realistic objective function

resulting from incrementally moving a point in the diagram is described in Section 3.2.3.)

The basic simplex algorithm does not itself handle variables that may take negative values

(so-calledunrestricted variables). It instead imposes an implicit constraintx ≥ 0 on all variables

occurring in its equations. Augmented simplex form allows us to handle unrestricted variables ef-

ficiently and simply; it was developed for implementing constraint logic programming languages

[101], and Cassowary adopts it. Conceptually it usestwo tableaux rather than one. All of the

unrestricted variables from the original constraintsC will be placed inCU, the unrestricted vari-

able tableau.CS, the simplex tableau, contains only variables constrained to be non-negative (the

restricted variables).

Thus, an optimization problem is inaugmented simplex formif the constraintsC have the form

CU ∧ CS∧ CI whereCU andCS are conjunctions of linear arithmetic equations,CI is
∧{x ≥ 0 |

x ∈ vars(CS)}, and the objective functionf is a linear expression over variables inCS.

The simplex algorithm is used to determine an optimal solution for the equations inCS, the

simplex tableau, ignoring the unrestricted variable tableau (CU) during the optimization proce-

dure. (CU need only be considered when finding the feasible region, prior to optimization.) The

equations in theCU are then used to determine values for its unrestricted variables.

It is not difficult to re-write an arbitrary optimization problem over linear real equations and

inequalities into augmented simplex form. The first step is to convert inequalities to equations.

Each inequality of the forme ≤ r, wheree is a linear real expression andr is a number, can

be replaced withe + s = r ∧ s ≥ 0 wheres is a newly-introduced non-negativeslackvariable.

Similarly, we replacee≥ r with e− s = r ∧ s≥ 0.

For example, the constraints for Figure 3.1 can be rewritten as

47

minimizexm− xl subject to

2xm = xl + xr

xl + 10 +s1 = xr

xl − s2 = −10

xr + s3 = 100

0 ≤ s1, s2, s3

We now separate the equalities intoCU andCS. Initially all equations are inCS. We move the

unrestricted variables intoCU using Gauss-Jordan elimination. To do this, we select an equation

in CS containing an unrestricted variableu and remove the equation fromCS. We then solve the

equation foru, yielding a new equationu = e for some expressione. We then substitutee for all

remaining occurrences ofu in CS, CU, andf , and place the equationu = e in CU. The process is

repeated until there are no more unrestricted variables inCS. In the example,xr + s3 = 100 can be

used to substitute 100− s3 for xr yielding:

minimizexm− xl subject to

xr = 100− s3 CU

2xm = xl + 100− s3 CS

xl + 10 +s1 = 100− s3

xl − s2 = −10

0 ≤ s1, s2, s3 CI

Next, the first equation ofCS can be used to substitute 50 +1
2xl − 1

2s3 for xm, giving

48

minimize 50− 1
2xl − 1

2s3 subject to

xm = 50 + 1
2xl − 1

2s3

xr = 100− s3 CU

xl + 10 +s1 = 100− s3 CS

xl − s2 = −10

0 ≤ s1, s2, s3 CI

Now we movexl to CU usingxl = s2− 10, giving

minimize 55− 1
2s2− 1

2s3 subject to

xm = 45 + 1
2s2− 1

2s3

xr = 100− s3

xl = s2− 10 CU

s2 + s1 = 100− s3 CS

0 ≤ s1, s2, s3 CI

(Hereafter, the labels forCU and CS will be omitted: constraints above the horizontal line are

in CU, and constraints below the line are inCS. Also, CI will be omitted entirely—any variable

occurring below the horizontal line is implicitly constrained to be non-negative.)

The simplex method works by taking an optimization problem in “basic feasible solved form”

(a type of normal form) and repeatedly applying matrix operations to obtain new basic feasible

solved forms. Once we have split the equations intoCU andCS, we can ignoreCU for purposes of

optimization.

In the Cassowary implementation, all variables that may be accessed from outside the solver

are unrestricted. Only error or slack variables are represented as restricted variables, and these

variables occur only within the solver (Section 3.3). The primary benefit of this simplification is

49

that the programmer using the solver always uses just the one kind of variable. A minor benefit

is that only the external, unrestricted variables actually store their values as a field in the variable

object; the values of restricted variables are just given by the tableau. A minor drawback is that

the constraintv ≥ 0 must be represented explicitly. (For any other constantc 6= 0, v ≥ c must be

represented explicitly in any event.)

In the running example, the constraints imply thatxr is non-negative. However, sincexr is ac-

cessible from outside the solver, we represent it as unrestricted. This does not change the solutions

found. Also, I show the operations as modifyingCU as well asCS. It would be possible to modify

just CS and leaveCU unchanged, usingCU only to define values for the variables on the left hand

side of its equations. This would speed up pivoting, but it would make the incremental updates of

the constants in edit constraints slower (Section 3.2.4). Because the latter is a much more frequent

operation, I do actually modify bothCU andCS in the implementation.

An augmented simplex form optimization problem is inbasic feasible solved formif the equa-

tions are of the form

x0 = c + a1x1 + . . . + anxn

where the variablex0 does not occur in any other equation or in the objective function. If the

equation is inCS, c must be non-negative. However, there is no such restriction on the constants

for the equations inCU. In either case the variablex0 is said to bebasicand the other variables

in the equation areparameters. A problem in basic feasible solved form defines abasic feasible

solution, which is obtained by setting each parametric variable to 0 and each basic variable to the

value of the constant in the right-hand side.

For instance, the following constraint is in basic feasible solved form and is equivalent to the

problem above.

minimize 55− 1
2s2− 1

2s3 subject to

xl = −10 +s2

xm = 45 + 1
2s2− 1

2s3

xr = 100− s3

s1 = 100− s2− s3

50

The basic feasible solution corresponding to this basic feasible solved form is

{xl 7→ −10, xm 7→ 45, xr 7→ 100, s1 7→ 100, s2 7→ 0, s3 7→ 0}.

The value of the objective function with this solution is 55.

3.2.2 Simplex optimization

I now describe how Cassowary finds an optimum solution to a constraint in basic feasible solved

form. Except for the operations on the additional unrestricted variable tableauCU, the material

presented in this subsection is simply Phase II of the standard two-phase simplex algorithm.

The simplex algorithm finds the optimum by repeatedly looking for an “adjacent” basic feasible

solved form whose basic feasible solution decreases the value of the objective function that we are

minimizing. When no such adjacent basic feasible solved form can be found, we have achieved

an optimum. The underlying operation is calledpivoting and involves exchanging a basic and a

parametric variable using matrix operations. Thus, “adjacent” means the new basic feasible solved

form can be reached by performing a single pivot.

In the example, increasings2 from 0 will decrease the value of the objective function we are

minimizing. We must be careful: we cannot increase the value ofs2 indefinitely as this may cause

the value of some other basic non-negative variable to become negative. We must examine the

equations inCS. The equations1 = 100− s2− s3 allowss2 to take at most a value of 100, because

if s2 becomes larger than this, thens1 would become negative. The equations above the horizontal

line do not restricts2, since whatever values2 takes the unrestricted variablesxl andxm can take

values to satisfy the equations. In general, we choose the most restrictive equation inCS, and

use it to eliminates2. In the case of ties we arbitrarily break the tie. In this example, the most

restrictive equation (there is only one) iss1 = 100− s2 − s3. Writing s2 as the subject we obtain

s2 = 100− s1− s3. We replaces2 everywhere by 100− s1− s3 and obtain

51

minimize 5 +1
2s1 subject to

xl = 90− s1− s3

xm = 95− 1
2s1− s3

xr = 100− s3

s2 = 100− s1− s3

We have just performed a pivot, having moveds1 out of the set of basic variables and replaced

it by movings2 into the basis. The value of the objective function has decreased from 55 to 5.

We continue this process. Increasing the value ofs1 would increase the value of the objective

function (which we are trying to minimize, so we do not want to do this). Note that decreasing

s1 would decrease the objective function’s value, but ass1 is constrained to be non-negative, it

already takes its minimum value of 0 in the associated basic feasible solution. Hence we are at an

optimal solution.1 As one might expect,xl is 10 units away fromxr in this solution, minimizing

the distance between the points while still satisfying thexl + 10≤ xr constraint.

In general, the simplex algorithm applied toCS is described as follows. We are given a problem

in basic feasible solved form in which the variablesx1, . . . , xn are basic and the variablesy1, . . . , ym

are parameters.

minimizee+
∑m

j=1 djyj subject to

∧n
i=1 xi = ci +

∑m
j=1 aij yj ∧∧n

i=1 xi ≥ 0 ∧ ∧m
j=1 yj ≥ 0.

Select an entry variableyJ such thatdJ < 0. (An entry variable is one that will enter the basis,

i.e., it is currently parametric and we want to make it basic.) Pivoting on such a variable can only

decrease the value of the objective function. If no such variable exists, the optimum has been

1If we had an unrestricted variable in the objective function, the optimization would be unbounded. This possibility is
not an issue for the algorithm because of the nature of the objective functions that arise from edit and stay constraints
(Section 3.2.3).

52

simplex opt(CS,f)
repeat

% Choose variableyJ to become basic
if for eachj ∈ {1, . . . , m} dj ≥ 0 then

return % an optimal solution has been found
endif
chooseJ ∈ {1, . . . , m} such thatdJ < 0
% Choose variablexI to become non-basic
chooseI ∈ {1, . . . , n} such that
−cI/aIJ = mini∈{1,...,n}{−ci/aiJ | aiJ < 0}

e := (xI − cI −
∑m

j=1,j 6=J aIj yj)/aIJ

CS [I] := (YJ = e)
replaceYJ by e in f
for eachi ∈ {1, . . . , n}

if i 6= I then replaceYJ by e in CS [I] endif
endfor

endrepeat

Figure 3.2: Simplex optimization

reached. Now determine the exit variablexI . We must choose this variable so that it maintains

basic feasible solved form by ensuring that the newci ’s are still positive after pivoting. That is, we

must choose anxI so that−cI/aIJ is a minimum element of the set

{−ci/aiJ | aiJ < 0 and 1≤ i ≤ n}.

If there were noi for which aiJ < 0 then we could stop since the optimization problem would

be unbounded and so would not have a minimum: we could chooseyJ to take an arbitrarily large

value and thus make the objective function arbitrarily small. However, this potential problem is

not an issue in this context since the optimization problems will always have a lower bound of 0.

We proceed to choosexI , and pivotxI out and replace it withyJ to obtain the new basic feasible

solution. We continue this process until an optimum is reached. The algorithm is specified in

Figure 3.2 and takes as inputs the simplex tableauCS and the objective functionf .

53

3.2.3 Handling non-required constraints

Suppose the user wishes to editxm in the diagram and havexl andxr weakly stay where they are.

These desires correspond to the non-required constraintsedit xm, stay xl , andstay xr . Suppose

further that we are trying to movexm to position 50, and thatxl andxr are currently at 30 and

60 respectively. We are thus imposing the constraintsstrong xm = 50, weak xl = 30, andweak

xr = 60.

As discussed in Section 3.1.1, there are various possible comparators for specifying how con-

flicting non-required constraints are to be traded off. Cassowary finds weighted-sum-better solu-

tions. (Since every weighted-sum-better solution is also a locally-error-better solution [14], Cas-

sowary finds locally-error-better solutions as well.)

The error for an equality constrainte1 = e2 is defined as|e1 − e2|, while the error for an

inequality constrainte1 ≤ e2 is 0 if e1 ≤ e2 and otherwisee1 − e2. For example, the error for the

constraintxm = 50 is|xm− 50|.

To form an objective function for the weighted-sum-better comparator, we can sum the errors

for the each constraint, weighting the errors so that satisfying any strong constraint is always

strictly more important than satisfying any combination of weaker constraints. For the example,

the objective function is

s|xm− 50| + w|xl − 30| + w|xr − 60|

wheresandw are appropriate weights. Due to the absolute value operators, this objective function

is not linear, and hence the simplex method is not applicable directly. I now show how Cassowary

solves the problem usingquasi-linear optimization.

Both the edit and the stay constraints will be represented as equations of the form

v = α + δ+
v − δ−v

whereδ+
v andδ−v are non-negative variables representing the deviation ofv from the desired value

α. If the constraint is satisfied bothδ+
v andδ−v will be 0. Otherwiseδ+

v will be positive andδ−v will

54

be 0 ifv is too big, or vice versa ifv is too small.2 Because we wantδ+
v andδ−v to be 0 if possible, we

make them part of the objective function, with larger coefficients for the error variables of stronger

constraints. (We need to use the pair of variables to satisfy simplex’s non-negativity restriction,

since these variablesδ+
v andδ−v will be part of the objective function.)

Translating the constraintsstrong xm = 50,weak xl = 30, andweak xr = 60 which arise from

the edit and stay constraints we obtain:

xm = 50 +δ+
xm
− δ−xm

xl = 30 +δ+
xl
− δ−xl

xr = 60 +δ+
xr
− δ−xr

0 ≤ δ+
xm

, δ−xm
, δ+

xl
, δ−xl

, δ+
xr

, δ−xr

as well as the original constraints:

2xm = xl + xr

xl + 10 ≤ xr

xl ≥ −10

xr ≤ 100

To ensure that strong constraints are always satisfied in preference to weak ones, Cassowary

uses symbolic weights for the coefficients in the objective function, represented as tuples and

ordered lexicographically, rather than real numbers. In the presentation that follows, I will depict

these symbolic weights as pairs, such as [1, 2], which represents the symbolic weight consisting

of the unit weight for thestrong strength plus twice the unit weight for theweak strength. The

objective function for our example can now be restated as:

minimize [1, 0]δ+
xm

+ [1, 0]δ−xm
+ [0, 1]δ+

xl
+ [0, 1]δ−xl

+ [0, 1]δ+
xr

+ [0, 1]δ−xr

(As an aside, if we were not using symbolic weights, and instead using real numbers as co-

efficients in the objective function, we might uses = 1000 andw = 1 for thestrong andweak

2Although the equation may be satisfied with bothδ+
v andδ−v non-zero, the simplex optimization itself forces at least

one of them to be zero (Section 3.2.4).

55

strengths. In that case the objective function would be

minimize 1000δ+
xm

+ 1000δ−xm
+ δ+

xl
+ δ−xl

+ δ+
xr

+ δ−xr
.

While simpler, this technique has the danger that in some cases the weak constraints could over-

power the strong ones, contrary to the solutions allowed by the constraint hierarchy theory. Sym-

bolic weights avoid this danger.)

Returning to our example with symbolic weights as coefficients in the objective function, an

optimal solution of this problem can be found using the simplex algorithm, and results in a tableau

minimize [0, 10] + [1, 2]δ+
xm

+ [1,−2]δ−xm
+ [0, 2]δ−xl

+ [0, 2]δ−xr
subject to

xm = 50 +δ+
xm

−δ−xm

xl = 30 +δ+
xl
−δ−xl

xr = 70 +2δ+
xm
−2δ−xm

−δ+
xl

+δ−xl

s1 = 30 +2δ+
xm
−2δ−xm

−2δ+
xl

+2δ−xl

s3 = 30 −2δ+
xm

+2δ−xm
+δ+

xl
−δ−xl

δ+
xr

= 10 +2δ+
xm
−2δ−xm

−δ+
xl

+δ−xl
+δ−xr

s2 = 40 +δ+
xl
−δ−xl

This corresponds to the solution{xm 7→ 50, xl 7→ 30, xr 7→ 70} illustrated in Figure 3.1.

Notice that the weak stay constraint onxr is not satisfied (δ+
xr

is non-zero, read directly from the

second to last line of the above tableau).

3.2.4 Incrementality: resolving the optimization problem

Now suppose the user moves the mouse (which is editingxm) to x = 60. We wish to solve a new

problem, with constraintsstrong xm = 60, andweak xl = 30 andweak xr = 70 (so thatxl andxr

should stay where they are if possible).

There are two steps. First, we modify the tableau to reflect the new constraints we wish to

solve. Second, we resolve the optimization problem for this modified tableau.

56

Let us first examine how to modify the tableau to reflect the new values of the stay constraints.

This will not require re-optimizing the tableau, since we know that the new stay constraints are

satisfied exactly. Suppose the previous stay value for variablev wasα, and in the current solution

v takes valueβ. The current tableau contains the information that

v = α + δ+
v − δ−v

and we need to modify this so that instead

v = β + δ+
v − δ−v

There are two cases to consider: (a) bothδ+
v andδ−v are parameters, or (b) one of them is basic.

In case (a)v must take the valueα in the current solution since bothδ+
v andδ−v take the value

0 and

v = α + δ+
v − δ−v

Henceβ = α and no changes need to be made.

In case (b) assume without loss of generality thatδ+
v is basic. In the original equation repre-

senting the stay constraint, the coefficient forδ+
v is the negative of the coefficient forδ−v . Since

these variables occur in no other constraints, this relation between the coefficients will continue to

hold as we perform pivots. In other words,δ+
v andδ−v come in pairs: any equation that contains

δ+
v will also containδ−v , with one coefficient the negative of the other. Sinceδ+

v is assumed to be

basic, it occurs exactly once in an equation with constantc, and further this equation also contains

the only occurrence ofδ−v . In the current solution

{v 7→ β, δ+
v 7→ c, δ−v 7→ 0}

and since the equation

v = α + δ+
v − δ−v

57

holds,β = α + c. To replace the equation

v = α + δ+
v − δ−v

by

v = β + δ+
v − δ−v

we simply need to replace the constantc in the row forδ+
v by 0. Since there are no other occurrences

of δ+
v andδ−v , we have replaced the old equation with the new.

For our example, to update the tableau for the new values for the stay constraints onxl andxr ,

we simply set the constant of the second to last equation (the equation forδ+
xr

) to 0. The tableau is

now:

minimize [0, 0] + [1, 2]δ+
xm

+ [1,−2]δ−xm
+ [0, 2]δ−xl

+ [0, 2]δ−xr
subject to

xm = 50 +δ+
xm

−δ−xm

xl = 30 +δ+
xl
−δ−xl

xr = 70 +2δ+
xm
−2δ−xm

−δ+
xl

+δ−xl

s1 = 30 +2δ+
xm
−2δ−xm

−2δ+
xl

+2δ−xl

s3 = 30 −2δ+
xm

+2δ−xm
+δ+

xl
−δ−xl

δ+
xr

= 0 +2δ+
xm
−2δ−xm

−δ+
xl

+δ−xl
+δ−xr

s2 = 40 +δ+
xl
−δ−xl

(For completeness, in the running example, I update the constant part of the objective function, as

well as its other terms. However, the constant part of the objective function is irrelevant for the

algorithm, and my implementations ignore it.)

Now let us consider the edit constraints. Suppose the previous edit value forv wasα, and the

new edit value forv is β. The current tableau contains the information that

v = α + δ+
v − δ−v

58

and again we need to modify this so that instead

v = β + δ+
v − δ−v

To do so we must replace every occurrence of

δ+
v − δ−v

by

β − α + δ+
v − δ−v

taking proper account of the coefficients ofδ+
v andδ−v . (Again, remember thatδ+

v andδ−v come in

pairs.)

If either of δ+
v andδ−v is basic, this simply involves appropriately modifying the equation in

which they are basic. Otherwise, if both are non-basic, then we need to change every equation of

the form

xi = ci + a′vδ
+
v − a′vδ

−
v + e

to

xi = ci + a′v(β − α) + a′vδ
+
v − a′vδ

−
v + e

Hence modifying the tableau to reflect the new values of edit and stay constraints involves only

changing the constant values in some equations. The modifications for stay constraints always

result in a tableau in basic feasible solved form, since it never makes a constant become negative.

In contrast the modifications for edit constraints may result in an infeasible tableau.

To return to our example, suppose we pick upxm with the mouse and move it to 60. Then

α = 50 andβ = 60, so we need to add 10 times the coefficient ofδ+
xm

to the constant part of every

row. The modified tableau, after the updates for both the stays and edits, is

59

minimize [0, 20] + [1, 2]δ+
xm

+ [1,−2]δ−xm
+ [0, 2]δ−xl

+ [0, 2]δ−xr
subject to

xm = 60 +δ+
xm

−δ−xm

xl = 30 +δ+
xl
−δ−xl

xr = 90 +2δ+
xm
−2δ−xm

−δ+
xl

+δ−xl

s1 = 50 +2δ+
xm
−2δ−xm

−2δ+
xl

+2δ−xl

s3 = 10 −2δ+
xm

+2δ−xm
+δ+

xl
−δ−xl

δ+
xr

= 20 +2δ+
xm
−2δ−xm

−δ+
xl

+δ−xl
+δ−xr

s2 = 40 +δ+
xl
−δ−xl

Clearly it is feasible and already in optimal form, and so we have incrementally resolved the

problem by simply modifying constants in the tableaux. The new tableaux give the solution{xm 7→
60, xl 7→ 30, xr 7→ 90}. So sliding the midpoint rightwards has caused the right point to slide

rightwards as well, but twice as far. The resulting diagram is shown at the top of Figure 3.3.

0 10050

0 10050

xl xrxm

xr

xl xm

−10

−10

Figure 3.3: Resolving the constraints

Suppose we now movexm from 60 to 90. The modified tableau is

60

minimize [0, 60] + [1, 2]δ+
xm

+ [1,−2]δ−xm
+ [0, 2]δ−xl

+ [0, 2]δ−xr
subject to

xm = 90 +δ+
xm

−δ−xm

xl = 30 +δ+
xl
−δ−xl

xr = 150 +2δ+
xm
−2δ−xm

−δ+
xl

+δ−xl

s1 = 110 +2δ+
xm
−2δ−xm

−2δ+
xl

+2δ−xl

s3 = −50 −2δ+
xm

+2δ−xm
+δ+

xl
−δ−xl

δ+
xr

= 60 +2δ+
xm
−2δ−xm

−δ+
xl

+δ−xl
+δ−xr

s2 = 40 +δ+
xl
−δ−xl

The tableau is no longer in basic feasible solved form, since the constant of the row fors3 is

negative, even thoughs3 is supposed to be non-negative. (In this solutionxr = 150, so that the right

endpoint has crashed through thexr ≤ 100 barrier.)

Thus, in general, after updating the constants for the edit constraints, the simplex tableauCS

may no longer be in basic feasible solved form, since some of the constants may be negative.

However, the tableau is still in basic form, so we can still read a solution directly from it as before.

Also, because no coefficient has changed (in particular the optimization function is the same), the

resulting tableau reflects an optimal but not feasible solution.

We need to find a feasible and optimal solution. We could do so by adding artificial variables

(as when adding a constraint—see Section 3.2.5), optimizing the sum of the artificial variables to

find an initial feasible solution, and then re-optimizing the original problem.

But we can do much better. The process of moving from an optimal andinfeasiblesolution

to an optimal andfeasiblesolution is exactly the dual of normal simplex algorithm, where we

progress from a feasible and non-optimal solution to feasible and optimal solution. Hence we can

use thedual simplex algorithmto find a feasible solution while staying optimal.

Solving the dual optimization problem starts from an infeasible optimal tableau of the form

minimizee+ Σm
j=1djyj subject to

∧n
i=1 xi = ci + Σm

j=iaij yj

61

where someci may be negative for rows with non-negative basic variables (accounting for the

tableau’s infeasibility) and eachdj is non-negative (so it is optimal).

The dual simplex algorithm selects an exit variable by finding a rowI with non-negative basic

variablexI and negative constantcI . The entry variable is the variableyJ such that the ratiodJ/aIJ

is the minimum of alldj/aIj whereaIj is positive. This selection criteria ensures that when pivoting

we stay at an optimal solution. The pivot replacesyj by

−1/aIj (−xI + cI + Σm
j=1,j6 =JaIj yj)

and is performed as in the (primal) simplex algorithm. The algorithm is shown in Figure 3.4.

Continuing the example above, we select the exit variables3—the only non-negative basic vari-

able for a row with negative constant. We find thatδ+
xl

has the minimum ratio since its coefficient

in the optimization function is 0, so it will be the entry variable. Replacingδ+
xl

everywhere by

50 +s3 + 2δ+
xm
− 2δ−xm

+ δ−xl
we obtain the tableau

minimize [0, 60] + [1, 2]δ+
xm

+ [1,−2]δ−xm
+ [0, 2]δ−xl

+ [0, 2]δ−xr
subject to

xm = 90 +δ+
xm

−δ−xm

xl = 80 +s3 +2δ+
xm
−2δ−xm

xr = 100 −s3

s1 = 10 −2s3 −2δ+
xm

+2δ−xm

δ+
xl

= 50 +s3 +2δ+
xm
−2δ−xm

+δ−xl

δ+
xr

= 10 −s3 +δ−xr

s2 = 90 +s3 +2δ+
xm
−2δ−xm

The tableau is feasible (and of course still optimal) and represents the solution{xm 7→ 90,xr 7→
100, xl 7→ 80}. So by sliding the midpoint further right, the rightmost point hits the wall and the

left point slides right to satisfy the constraints. The resulting diagram is shown at the bottom of

Figure 3.3.

To summarize, incrementally finding a new solution for new input variables involves updating

the constants in the tableaux to reflect the updated stay constraints, then updating the constants to

62

re optimize(CS,f)
foreachstay: v ∈ C

if δ+
v or δ−v is basic in rowi then ci := 0 endif

endfor
foreachedit : v ∈ C

let α andβ be the previous and current edit values forv
let δ+

v beyj

foreach i ∈ {1, . . . , n}
ci := ci + aij (β − α)

endfor
endfor
repeat

% Choose variablexI to become non-basic
chooseI wherecI < 0
if there is no suchI

return true
endif
% Choose variableyJ to become basic
if for eachj ∈ {1, . . . , m} aIj ≤ 0 then

return false
endif
chooseJ ∈ {1, . . . , m} such that

dJ/aIJ = minj∈{1,...,m}{dj/aIj | aIj > 0}
e := (xI − cI −

∑m
j=1,j 6=J aIj yj)/aIJ

replaceyJ by e in f
for eachi ∈ {1, . . . , n}

if i 6= I then replaceyJ by e in row i endif
endfor
replace theI th row byyJ = e

until false

Figure 3.4: Dual Simplex Re-optimization

63

reflect the updated edit constraints, and finally re-optimizing if needed. In an interactive graphical

application, this dual optimization method typically requires a pivot only when one part of the

figure first hits or first moves away from a barrier. The intuition behind this is that when a constraint

first becomes unsatisfied, the value of one of its error variables will become non-zero, and hence

the variable will have to enter the basis; conversely, when a constraint first becomes satisfied, we

can move one of its error variables out of the basis.

In the example, pivoting occurred when the right pointxr came up against a barrier. Thus, if

we picked up the midpointxm with the mouse and smoothly slid it rightwards, 1 pixel every screen

refresh, only one pivot would be required in moving from 50 to 95. This behavior is why the

dual optimization is well suited to this problem and leads to efficient resolving of the hierarchical

constraints.

3.2.5 Incrementality: adding a constraint

I now describe how Cassowary adds the equation for a new constraint incrementally. This tech-

nique is also used in the implementation to find an initial basic feasible solved form for the original

simplex problem, by starting from an empty constraint set and adding the constraints one at a time.

As an example, suppose we wish to require that the midpoint be centered. That is, we wish to

add a required constraintxm = 50 to the final tableau given in Section 3.2.2. For reference, that

tableau is:

xl = 90− s1− s3

xm = 95− 1
2s1− s3

xr = 100− s3

s2 = 100− s1− s3

If we substitute for each of the basic variables inxm = 50 (namelyxm), we obtain the equation

45− 1
2s1 − s3 = 0. In order to add this constraint straightforwardly to the tableau we create a

new non-negative variablea called anartificial variable. (This technique is simply an incremental

version of the operation used in Phase I of the two-phase simplex algorithm.) We leta = 45−
1
2s1−s3 be added to the tableau (clearly this gives a tableau in basic feasible solved form) and then

64

minimize the value ofa. If a takes the value 0 then we have obtained a solution to the problem

with the added constraint, and we can then eliminate the artificial variable altogether since it is a

parameter (and hence takes the value 0). This is the case for our example; the resulting tableau is

xl = 0 +s3

xm = 50

xr = 100− s3

s1 = 90− 2s3

s2 = 10 +s3

In general, to add a new required constraint to the tableau we first convert it to an augmented

simplex form equation by adding a slack variable if it is an inequality. Next, we use the current

tableau to substitute out all the basic variables. This gives an equatione = 0 wheree is a linear

expression. If the constant part ofe is negative, we multiply both sides by−1 so that the constant

becomes non-negative. Ifecontains an unrestricted variable we usee to substitute for that variable,

and we add the equation to the tableau above the line (i.e., toCU). Otherwise we create a restricted

artificial variablea, add the equationa = e to the tableau below the line (i.e., toCS), and minimize

e. If the resulting minimum is not zero then the constraints are unsatisfiable. Otherwisea is either

parametric or basic. Ifa is parametric, the column for it can be simply removed from the tableau.

If it is basic, the row must have constant 0 (since we were able to achieve a value of 0 for the

objective function, which is equal toa). If the row is justa = 0, it can be removed. Otherwise,

a = 0 + bx + · · · whereb 6= 0. We can then pivotx into the basis using this row and remove the

column fora.

If the equation being added contains any unrestricted variables after substituting out all the

basic variables, as described above we do not need to use an artificial variable. Not only that,

we could notuse an artificial variable, since we cannot put an equation inCS that contains an

unrestricted variable. In some other cases we can avoid using an artificial variable for efficiency,

even though it would be permissible to use one. We can avoid using an artificial variable if we can

choose a subject for the equation from among its current variables. Here are the rules for choosing

a subject. (These are to be used after replacing any basic variables with their defining expressions.)

65

We start with an expressione. If necessary, normalizee by multiplying by−1 so that its

constant part is non-negative. We are adding the constrainte = 0 to the tableau. To do this, we

want to pick a variable ine to be the subject of an equation, so that we can add the rowv = e′,

wheree′ the result of solvinge = 0 for v.

• If e contains any unrestricted variables, we must choose an unrestricted variable as the sub-

ject.

• If the subject is new to the solver, we will not have to do any substitutions, so we prefer new

variables to ones that are currently noted as parametric.

• If econtains only restricted variables, if there is a (restricted) variable ine that has a negative

coefficient and that is new to the solver, we can pick that variable as the subject.

• Otherwise use an artificial variable.

A consequence of these rules is that we can always add a non-required constraint to the tableau

without using an artificial variable, because the equation will contain a positive and a negative

error or slack variable, both of which are new to the solver, and which occur with opposite signs.

(Constraints that are originally equations will have a positive and a negative error variable, while

constraints that are originally inequalities will have one error variable and one slack variable, with

opposite signs.) This observation is good news for performance, since adding a non-required edit

constraint is a common operation.

3.2.6 Incrementality: removing a constraint

We also want a method for incrementally removing a constraint from the tableaux. After a series

of pivots have been performed, the information represented by the constraint may not be contained

in a single row, so we need a way to identify the constraint’s influence in the tableaux. To do

this, we use a “marker” variable that is originally present only in the equation representing the

constraint. We can then identify the constraint’s effect on the tableaux by looking for occurrences

of that marker variable. For inequality constraints, the slack variables that we added to make it

66

an equality serves as the marker (becauses will originally occur only in that equation). For non-

required equality constraints, either of its two error variables can serve as a marker (Section 3.2.3).

For required equality constraints, we add a “dummy” restricted variable to the original equation

to serve as a marker, which we never allow to enter the basis (so that it always has value 0). In

our running example, then, to allow the constraint 2xm = xl + xr to be deleted incrementally we

would have added a dummy variabled, resulting in 2xm = xl + xr + d. The simplex optimization

routine checks for dummy variables in choosing an entry variable and does not allow one to be

selected. Dummy variables must be restricted, not unrestricted, because we might need to have

some of them in the equations for restricted basic variables. (I did not include the variabled in the

tableaux presented earlier to simplify the presentation.)

Consider removing the constraint thatxl is 10 to the left ofxr . The slack variables1, which we

added to the inequality to make it an equation, records exactly how this equation has been used to

modify the tableau. We can remove the inequality by pivoting the tableau untils1 is basic and then

simply drop the row in which it is basic.

In the tableau in Section 3.2.5 (obtained after adding the required constraintxm = 50), s1 is

already basic, so removing it simply means dropping the row in which it is basic, obtaining

xl = 0 +s3

xm = 50

xr = 100 −s3

s2 = 10 +s3

If we wanted to remove this constraint from the tableau before addingxm = 50 (i.e., the final

tableau given in Section 3.2.2, page 51),s1 is a parameter. We makes1 basic by treating it as an

entry variable and (as usual) determining the most restrictive equation, then using that to pivots1

into the basis before finally removing the row.

There is such a restrictive equation in this example. However, if the marker variable does not

occur inCS, or if its coefficients inCS are all non-negative, then no equation restricts the value

of the marker variable. If the marker variable does occur in one or more equations inCS, always

with a positive coefficient, pick the equation with the smallest ratio of the constant to the marker

67

variable’s coefficient. (The row with the marker variable will become infeasible after the pivot, but

all the other rows will still be feasible, and we will be dropping the row with the marker variable.

In effect we are removing the non-negativity restriction on the marker variable.) Finally, if the

marker variable occurs only in equations for unrestricted variables, we can choose any equation in

which it occurs.

In the final tableau in Section 3.2.2, the rows2 = 100−s1−s3 is the most constraining equation.

Pivoting to lets1 enter the basis and then removing the row in which it is basic, we obtain

xl = −10 +s2

xm = 45 + 1
2s2− 1

2s3

xr = 100− s3

In the preceding example the marker variable had a negative coefficient. Here is an example

that only has positive coefficients. The original constraints are:

x ≥ 10

x ≥ 20

x ≥ 30

In basic feasible solved form, this is:

x = 30 +s3

s1 = 20 +s3

s2 = 10 +s3

wheres1, s2, ands3 are the marker (and slack) variables forx ≥ 10, x ≥ 20, andx ≥ 30 respec-

tively. This gives a solution forx of x = 30, which of course satisfies all of the original inequalities.

Suppose we want to remove thex ≥ 30 constraint. We need to pivot to makes3 basic. The

equation that gives the smallest ratio iss2 = 10 +s3, so the entry variable iss3 and the exit variable

is s2, giving:

68

x = 20 +s2

s1 = 10 +s2

s3 = −10 +s2

This tableau is now infeasible, but we drop the row withs3 giving

x = 20 +s2

s1 = 10 +s2

which is, of course, feasible.

A beneficial result of using marker variables is that redundant constraints can be represented

and manipulated. Consider:

x ≥ 10

x ≥ 10

When converted to basic feasible solved form, eachx≥ 10 constraint gives rise to a separate slack

variable, which is used as the marker variable for that constraint.

x = 10 +s1

s2 = 0 +s1

To delete the secondx ≥ 10 constraint we would simply drop thes2 = 0 + s1 row. To delete the

first x≥ 10 constraint we would pivot, makings1 basic ands2 parametric:

x = 10 +s2

s1 = 0 +s2

and then drop thes1 = 0 +s2 row.

A consequence of directly representing redundant constraints is that they must all be removed

to eliminate their effect. (This seems to be a more desirable behavior for the solver than removing

69

redundant constraints automatically, although if the latter were desired the solver could be modified

to do this.) Another consequence is that when adding a new constraint, we would never decide that

it was redundant and not add it to the tableau.

Before we remove a constraint, there may be some stay constraints that were unsatisfied previ-

ously. If we just removed the constraint, these could come into play, so instead, we reset all of the

stays so that all variables are constrained to stay at their current values.

Also, if the constraint being removed is not required we need to remove the error variables for

it from the objective function. To do this we add the following to the expression for the objective

function:

−1× e× s× w

wheree is the error variable if it is parametric, or elsee is its defining expression if it is basic,s is

the unit symbolic weight for the constraint’s strength, andw is its weight at the given strength. (In

the implementations is an instance ofClSymbolicWeight andw is a float—see Section 3.3.7.)

If we allow non-required constraints other than stays and edits, we also need to re-optimize

after deleting a constraint, since a non-required constraint might have become satisfiable (or more

nearly satisfiable).

3.3 Implementation details

3.3.1 Principal classes

The principal classes in the implementations are as shown in Figure 3.5. All the classes start with

“Cl” for “Constraint Library” and are, of course, direct or indirect subclasses ofObject in the

Smalltalk and Java implementations.

Some of these classes make use of theDictionary (or Map) abstract data type: dictionaries

have keys and values and permit efficiently finding the value for a given key, and adding or deleting

key/value pairs. One can also iterate through all keys, all values, or all key/value pairs.

70

Object
ClAbstractVariable

ClDummyVariable
ClObjectiveVariable
ClSlackVariable
ClVariable

ClConstraint
ClEditOrStayConstraint

ClEditConstraint
ClStayConstraint

ClLinearConstraint
ClLinearEqualityConstraint
ClLinearInequalityConstraint

ClLinearExpression
ClTableau

ClSimplexSolver
ClStrength
ClSymbolicWeight

Figure 3.5: Principle classes in the Cassowary implementations

3.3.2 Solver protocol

The solver itself is represented as an instance ofClSimplexSolver. Its public message protocol is

as follows.

addConstraint(ClConstraint cn)

Incrementally add the linear constraintcn to the tableau. The constraint object contains its

strength.

removeConstraint(ClConstraint cn)

Remove the constraintcn from the tableau. Also remove any error variables associated with

cn from the objective function.

addEditVar(ClVariable v, ClStrength s)

Add an edit constraint of strengths on variablev to the tableau so thatsuggestValue (see

71

below) can be used on that variable after abeginEdit().

removeEditVar(ClVariable v)

Remove the previously added edit constraint on variablev. TheendEdit message automati-

cally removes all the edit variables as part of terminating an edit manipulation.

beginEdit()

Prepare the tableau for new values to be given to the currently-edited variables. TheaddEd-

itVar message should be used before callingbeginEdit, andsuggestValue and resolve

should be used only afterbeginEdit has been invoked, but before the required matching

endEdit.

suggestValue(ClVariable v, double n)

Specify a new desired valuen for the variablev. Before this call,v needs to have been added

as a variable of an edit constraint (either byaddConstraint of a hand-builtEditConstraint

object or more simply usingaddEditVar).

endEdit()

Denote the end of an edit manipulation, thus removing all edit constraints from the tableau.

EachbeginEdit call must be matched with a correspondingendEdit invocation, and the

calls may be nested properly.

resolve()

Try to re-solve the tableau given the newly specified desired values. Calls to resolve should

be sandwiched between abeginEdit() and anendEdit(), and should occur after new values

for edit variables are set usingsuggestValue.

addPointStays(Vector points)

This method is a bit of a kludge, and addresses the desire to satisfy the stays on both thex

andy components of a given point rather than on thex component of one point and they

component of another. The argumentpoints is an array of points, whosex andy components

72

are constrainable variables. This method adds a weak stay constraint to thex andy variables

of each point. The weights for thex and y components of a given point are the same.

However, the weights for successive points are each smaller than those for the previous

point (half of the previous weight). The effect of this is to encourage the solver to satisfy the

stays on both thex andy of a given point rather than thex stay on one point and they stay

on another. See Section 3.4 for more discussion of this issue.

setAutoSolve(boolean f)

Choose whether the solver should automatically optimize and set external variable values

after eachaddConstraint or removeConstraint. By default, auto-solving is on, but passing

false to this method will turn it off (until later turned back on by passingtrue to this method).

When auto-solving is off,solve (below) orresolve must be invoked to see changes to the

ClVariables contained in the tableau.

isAutoSolving() returns boolean

Returntrue if and only if the solver is auto-solving,false otherwise.

solve()

Optimize the tableau and set the externalClVariables contained in the tableau to their new

values. This method need only be invoked if auto-solving has been turned off. It never needs

to be called after aresolve method invocation.

reset()

Re-initialize the solver from the original constraints, thus getting rid of any accumulated

numerical problems. (Such problems have not yet arisen in practice, but I provide the method

just in case.)

3.3.3 Variables

ClAbstractVariable and its subclasses represent various kinds of constrained variables.ClAb-

stractVariable is an abstract class, that is, it is just used as a superclass of other classes: one does

73

not make instances ofClAbstractVariable itself. ClAbstractVariable defines the message proto-

col for constrainable variables. Its only instance variable isname, which is a string name for the

variable. (This field is used for debugging and constraint understanding tasks.)

Instances of the concreteClVariable subclass ofClAbstractVariable are what the user of the

solver sees (hence it was given a nicer class name). This class has an instance variablevalue that

holds the value of this variable. Users of the solver can send one of these variables the message

value to get its value. Each constraint variable has an optional attached object, and the constraint

solver can be instructed to invoke a callback upon changing the value assigned to any variable and

also upon completion of the re-solve phase (i.e., after all variable assignments are completed).

The other subclasses ofClAbstractVariable are used only within the solver. They do not hold

their own values—rather, the value is just given by the current tableau. None of them have any

additional instance variables.

Instances ofClSlackVariable are restricted to be non-negative. They are used as the slack

variable when converting an inequality constraint to an equation and for the error variables to

represent non-required constraints.

Instances ofClDummyVariable is used as marker variables to allow required equality con-

straints to be deleted. (For inequalities or non-required constraints, the slack or error variable is

used as the marker.) These dummy variables are never pivoted into the basis.

An instance ofClObjectiveVariable is used to index the objective row in the tableau. (Con-

ventionally this variable is namedz.) This kind of variable is just for convenience—the tableau

is represented as a dictionary (with some additional cross-references). Each row is represented

as an entry in the dictionary; the key is a basic variable and the value is an expression. So an

instance ofClObjectiveVariable is the key for the objective row. The objective row is unique in

that the coefficients of its expression areClSymbolicWeights in the Smalltalk implementation,

not just ordinary real numbers. However, the C++ and Java implementations convertClSymbol-

icWeights to real numbers to avoid dealing withClLinearExpressions parameterized on the type

of the coefficient (Section 3.3.7).

All variables understand the following messages:isDummy, isExternal, isPivotable, and

isRestricted. They also understand messages to get and set the variable’s name.

74

Table 3.1: Subclasses ofClAbstractVariable

Class isDummy isExternal isPivotable isRestricted

ClDummyVariable true false false true
ClVariable false true false false
ClSlackVariable false false true true
ClObjectiveVariable false false false false

For isDummy, instances ofClDummyVariable returntrue and others returnfalse. The solver

uses this message to test for dummy variables. It will not choose a dummy variable as the subject

for a new equation, unless all the variables in the equation are dummy variables. (The solver also

will not pivot on dummy variables, but this is handled by theisPivotable message.)

For isExternal, instances ofClVariable return true and others returnfalse. If a variable

respondstrue to this message, it means that it is known outside the solver, and so the solver needs

to give it a value after solving is complete.

For isPivotable, instances ofClSlackVariable returntrue and others returnfalse. The solver

uses this message to decide whether it can pivot on a variable.

For isRestricted, instances ofClSlackVariable and ofClDummyVariable return true, and

instances ofClVariable andClObjectiveVariable return false. Returningtrue means that this

variable is restricted to being non-negative.

A variable’s significance is largely just its identity (as mentioned above, variables have little

state: a name for debugging and a value for instances ofClVariable). The only other messages

that variables understand are some messages toClVariable for creating constraints (Section 3.3.6).

3.3.4 Linear Expressions

Instances of the classClLinearExpression hold a linear expression and are used in building and

representing constraints and in representing the tableau. A linear expression holds a dictionary of

variables and coefficients (the keys are variables and the values are the corresponding coefficients).

Only variables with non-zero coefficients are included in the dictionary; if a variable is not in this

dictionary its coefficient is assumed to be zero. The other instance variable is a constant. So to

75

represent the linear expressiona1x1 + · · ·+anxn +c, the dictionary would hold the keyx1 with value

a1, etc., and the constantc.

Linear expressions understand a large number of messages. Some of these are for constraint

creation (Section 3.3.6). The others are to substitute an expression for a variable in the constraint,

to add an expression, to find the coefficient for a variable, and so forth.

3.3.5 Constraints

There is an abstract classClConstraint that serves as the superclass for other concrete classes.

It defines two instance variables:strength andweight. The variablestrength is the strength of

this constraint in the constraint hierarchy (and should be an instance ofClStrength), while weight

is a float indicating the actual weight of the constraint at its indicated strength, ornil/null if it

does not have a weight. (Weights are only relevant for weighted-sum-better comparators, not for

locally-error-better ones.)

Constraints understand various messages that returntrue or false regarding some aspect of the

constraint, such asisRequired, isEditConstraint, isStayConstraint, andisInequality.

ClLinearConstraint is an abstract subclass ofClConstraint. It adds an instance variableex-

pression, which holds an instance ofClLinearExpression. It has two concrete subclasses. An

instance ofClLinearEquation represents the linear equality constraint

expression = 0.

An instance ofClLinearInequality represents the constraint

expression ≥ 0.

The other part of the constraint class hierarchy is for edit and stay constraints (both of which

are represented explicitly).ClEditOrStayConstraint has an instance fieldvariable, which is the

ClVariable with the edit or stay. Otherwise all that the two concrete subclasses do is respond

appropriately to the messagesisEditConstraint andisStayConstraint.

76

This constraint hierarchy is also intended to allow extension to include local propagation con-

straints (which would be another subclass ofClConstraint)—otherwise I could have made every-

thing be a linear constraint, and eliminated the abstract classClConstraint entirely.

3.3.6 Constraint Creation

This subsection describes a mechanism to allow constraints to be defined easily by programmers.

The convenience afforded by my toolkit varies among languages. Smalltalk’s dynamic nature

makes it the most expressive. C++’s operator overloading still permits using natural infix notation.

Java, however, requires using ordinary methods, and leaves us with the single option of prefix

expressions when building constraints.

In Smalltalk, the messages +, -, *, and / are defined forClVariable andClLinearExpression

to allow convenient creation of constraints by programmers. Also,ClVariable andClLinearEx-

pression, as well asNumber, definecnEqual:, cnGEQ:, andcnLEQ: to return linear equality or

inequality constraints. Thus, the Smalltalk expression

3*x+5 cnLEQ: y

returns an instance ofClLinearEquality representing the constraint 3x + 5 ≤ y. The expression

is evaluated as follows: the number 3 gets the message* x. Sincex is not a number, 3 sends

the message* 3 to x. x is an instance ofClVariable, which understands * to return a new linear

expression with a single term, namely itself times the argument. (If the argument is not a number

it raises an exception that the expression is non-linear.) The linear expression representing 3x

gets the message + with the argument 5, and returns a new linear expression representing 3x + 5.

This linear expression gets the messagecnLEQ: with the argumenty. It computes a new linear

expression representingy− 3x− 5, and then returns an instance ofClLinearInequality with this

expression.

(It is tempting to make this nicer by using the =,<=, and>= messages, so that one could write

3*x+5 <= y

77

instead but because the rest of Smalltalk expects =,<=, and>= to perform a test and return a

boolean, rather than to return a constraint, this would not be a good idea.)

Similarly, in C++ the arithmetic operators are overloaded to buildClLinearExpressions from

ClVariables and otherClLinearExpressions. Actual constraints are built using various construc-

tors forClLinearEquation orClLinearInequality. An enumeration defines the symbolic constants

cnLEQ andcnGEQ to approximate the Smalltalk interface. For example:

ClLinearInequality cn(3*x+5, cnLEQ, y); // C++

build the constraintcn representing 3x + 5 ≤ y. In Java, the same constraint would be built as

follows:

ClLinearInequality cn =

new ClLinearInequality(CL.Plus(CL.Times(x,3),5), CL.LEQ, y);

Although the Java implementation makes it more difficult to express programmer-written con-

straints, this inconvenience is relatively unimportant when the solver is used in conjunction with

graphical user interfaces for specifying the constraints.

3.3.7 Symbolic Weights and Strengths

The constraint hierarchy theory allows an arbitrary (although finite) number of strengths of con-

straint. In practice, however, programmers use a small number of strengths in a stylized way. The

current implementation therefore includes a small number of pre-defined strengths, and the max-

imum number of strengths is defined as a constant. (This constant can be changed as discussed

below.)

The strengths provided in the current release are:

required Required constraints must be satisfied exactly. A common use of a required constraint

is to give a shorthand name to an expression such as: win.right = win.left + win.width

strong This strength is conventionally used for edit constraints.

78

medium This strength can be used for strong stay constraints; for example, we might put medium

strength stay constraints on the width and height of an object and weak stay constraints on

its position to represent our preference that the object move instead of change size when

either is possible to maintain the stronger constraints.

weak This strength is used for most stay constraints.

Each strength category is represented as an instance ofClStrength.

A related class isClSymbolicWeight. As mentioned in Section 3.2.3, the objective function

is formed as the weighted sum of the positive and negative errors for the non-required constraints.

The weights should be such that the stronger constraints totally dominate the weaker ones. In

general, to pick a real number for the weight we need to know how big the values of the variables

might become. To avoid this problem altogether, in the Smalltalk and C++ implementations we

use symbolic weights and a lexicographic ordering for the weights rather than real numbers, which

ensures that strong constraints are always satisfied in preference to weak ones.

Instances ofClSymbolicWeight are used to represent these symbolic weights. These instances

have an array of floating point numbers, whose length is the number of non-required strengths

(so three as described here). Each element of the array represents the value at that strength, so

[1. 0, 0. 0, 10. 0] represents a weight of 1.0strong, 0.0 medium, and 10.0weak. (In Smalltalk,

ClSymbolicWeight is a variable length subclass; it could have had an instance variable with an

array of length 3 instead.) Symbolic weights understand various arithmetic messages (or operator

overloading in C++) as follows:

+ w

w is also a symbolic weight. Return the result of addingw to self (or this in C++).

– w

w is also a symbolic weight. Return the result of subtractingw from self.

* n

n is a number. Return the result of multiplyingself by n.

79

/ n

n is a number. Return the result of dividingself by n.

<= n, >= n, < n, > n, = n

w is a symbolic weight. Returntrue if self is related ton as the operator normally queries.

negative

Returntrue if this symbolic weight is negative (i.e., it does not consist of all zeros and the

first non-zero number is negative).

Instances ofClStrength represent a strength in the constraint hierarchy. The instance variables

arename (for printing purposes) andsymbolicWeight, which is the unit symbolic weight for this

strength. Thus, with the 3 strengths as above,strong is [1. 0, 0. 0, 0. 0],medium is [0. 0, 1. 0, 0. 0],

andweak is [0. 0, 0. 0, 1. 0].

The above arithmetic messages let the Smalltalk implementation of the solver use symbolic

weights just like numbers in expressions. This interface is important because the objective row

in the tableau has coefficients which areClSymbolicWeights, but which are subject to the same

manipulations as the other tableau rows whose expressions have coefficients that are just real num-

bers.

In both C++ and Java, an additional message calledasDouble() is understood byClSymbol-

icWeights. This converts the representation to a real number that approximates the total ordering

suggested by the more general vector of real numbers. It is these real numbers that are used as the

coefficients in the objective row of the tableau instead ofClSymbolicWeights (which the coeffi-

cients conceptually are). This kludge avoids the complexities that such genericity introduces to the

static type systems of C++ and Java.

Also, since Java lacks operator overloading, the above operations are invoked using suggestive

alphabetic method names such asadd, subtract, times, andlessThan.

80

3.3.8 ClSimplexSolver implementation

Here are the instance variables ofClSimplexSolver. Some fields are inherited fromClTableau,

the base class ofClSimplexSolver which provides the basic sparse-matrix interface (Section

3.3.9).

rows

A dictionary with keysClAbstractVariable and valuesClLinearExpression. This holds

the tableau. Note that the keys can be either restricted or unrestricted variables, i.e., bothCU

andCS are actually merged into one tableau. This simplifies the code considerably, since

most operations are applied to both restricted and unrestricted rows.

columns

A dictionary with keysClAbstractVariable and valuesSet of ClAbstractVariable. These

are the column cross-indices. Each parametric variablep is a key in this dictionary. The

corresponding set includes exactly those basic variables whose linear expression includes

p (p will of course have a non-zero coefficient). The keys can be either unrestricted or

restricted variables.

objective

An instance ofClObjectiveVariable (namedz) that is the key for the objective row in the

tableau.

infeasibleRows

A set of basic variables that have infeasible rows. This field is used when re-optimizing with

the dual simplex method.

prevEditConstants

An array of constants (floats) for the edit constraints on the previous iteration. The elements

in this array must be in the same order aseditPlusErrorVars andeditMinusErrorVars, and

the argument to the publicresolve: message.

81

stayPlusErrorVars, stayMinusErrorVars

An array of plus/minus error variables (instances ofClSlackVariable) for the stay con-

straints. The corresponding negative/positive error variable must have the same index in

stayMinusErrorVars/stayPlusErrorVars.

editPlusErrorVars, editMinusErrorVars

An array of plus/minus error variables (instances ofClSlackVariable) for the edit con-

straints. The corresponding negative/positive error variable must have the same index in

editMinusErrorVars/editPlusErrorVars.

markerVars

A dictionary whose keys are constraints and whose values are instances of a subclass of

ClAbstractVariable. This dictionary is used to find the marker variable for a constraint

when deleting that constraint. A secondary use is that iterating through the keys will give all

of the original constraints (useful for thereset method).

errorVars

A dictionary whose keys are constraints and whose values are arrays ofClSlackVariable.

This dictionary gives the error variable (or variables) for a given non-required constraint.

We need this if the constraint is deleted because the corresponding error variables must be

deleted from the objective function.

3.3.9 ClTableau (Sparse Matrix) Operations

The basic requirements for the tableau representation are that one should be able to perform the

following operations efficiently:

• determine whether a variable is basic or parametric

• find the corresponding expression for a basic variable

• iterate through all the parametric variables with non-zero coefficients in a given row

82

• find all the rows that contain a given parametric variable with a non-zero coefficient

• add/remove a row

• remove a parametric variable

• substitute out a variable (i.e., replace all occurrences of a variable with an expression, up-

dating the tableau as appropriate).

The representation of the tableau as a dictionary of rows, with column cross-indices, supports these

operations. Keeping the cross indices up-to-date and consistent with the row dictionary is error-

prone. Thus, the solver actually accesses the rows and columns only via the following interface of

ClTableau.

addRow(ClAbstractVariable var, ClLinearExpression expr)

Add the constraintvar=expr to the tableau.var will become a basic variable. Update the

column cross indices.

noteAddedVariable(ClAbstractVariable var, ClAbstractVariable subject)

Variablevar has been added to the linear expression forsubject. Update the column cross

indices.

noteRemovedVariable(ClAbstractVariable var, ClAbstractVariable subject)

Variablevar has been removed from the linear expression forsubject. Update the column

cross indices.

removeColumn(ClAbstractVariable var)

Remove the parametric variablevar from the tableau. This operation involves removing the

column cross index forvar and removingvar from every expression inrows in which it

occurs.

83

removeRow(ClAbstractVariable var)

Remove the basic variablevar from the tableau. Becausevar is basic, there should be a row

var=expr. Remove this row, and also update the column cross indices.

substituteOut(ClAbstractVariable var, ClLinearExpression expr)

Replace all occurrences ofvar with expr and update the column cross indices.

3.3.10 Omissions

The solver should implement Bland’s anti-cycling rule [101], but it does not at the moment. Adding

this should be straightforward if it ever proves necessary.

3.4 Comparator details

Cassowary favors solutions that satisfies some of the constraints completely, rather than ones that,

for example, partially satisfy each of two conflicting equalities. These are still legitimate locally-

error-better and weighted-sum-better solutions. Cassowary’s behavior is analogous to that of the

simplex algorithm, which always finds solutions at a vertex of the polytope even if all the solutions

on an edge or face are equally good. (Of course, Cassowary behaves this way because the simplex

algorithm does.)

Such solutions are also produced by greedy constraint satisfaction algorithms, including local

propagation algorithms such as DeltaBlue [127] and Indigo [11]: these algorithms try to satisfy

constraints one at a time, and in effect the constraints considered first are given a stronger strength

than those considered later.

However, there is an issue regarding comparators and Cassowary that has not yet been resolved

in an entirely clean way. One of the public methods for Cassowary isaddPointStays: points, as

discussed in Section 3.3.2. This method addresses the desire to satisfy the stays on both thex and

y components of a given point rather than on thex component of one point and they component

of another.

As an example of why this is useful, consider a line with endpointsp1 andp2 and a midpoint

m. There are constraints(p1.x+p2.x)/2 = m.x and(p1.y+p2.y)/2 = m.y. Suppose we are editing

84

m. It would look strange to satisfy the stay constraints onp1.x andp2.y, rather than both stays on

p1 or both stays onp2. (This claim has been verified empirically—in early prototype Cassowary

implementations this happened, and indeed it looked strange.)

The current implementation ofaddPointStays: points uses different weights for the stay

constraints for successive elements ofpoints—a kludge that seems to work well in practice.

It was difficult to devise an example where it would give a bad answer—here is a contrived

one. Suppose we have a line with endpointsp1 andp2 and a midpointm, and we are moving

m. Suppose also we have constraintsp2.x = 2*p3.x andp2.y = 2*p3.y. (This example is a bit

strange since here we are usingp3 as a distance from the origin rather than as a location—otherwise

multiplying it by 2 is problematic.) If we give these points toaddPointStays: in the orderp1, p2,

andp3, then the stays onp1 will have weight 1, those onp2 will have weight 0.5, and those onp3

will have weight 0.25. Then, a one legitimate weighted-sum-better solution would satisfy the stays

on p1.x andp1.y, but another legitimate weighted-sum-better solution would satisfy the stays on

p1.x, p2.y, andp3.y.

Here is a cleaner way to handle this situation. We first introduce a new comparator with the

dubious name oftilted-locally-error-better(TLEB). The set of TLEB solutions can be defined by

taking a given hierarchy, forming all possible hierarchies by breaking strength ties in all possible

ways to form a totally ordered set of constraints, and taking the union of the sets of solutions to

each of these totally ordered hierarchies.

For example, consider the two constraintsweak x = 0 andweak x = 10. The set of locally-

error-better solutions is the infinite set of mappings fromx to each number in[0. . . 10]. Assuming

equal weights on the constraints, the (single) least-squares solution is{x 7→ 5}. The TLEB so-

lutions are defined by producing all the totally ordered hierarchies and taking the union of their

solutions. In this case the two possible total orderings are:

weak x = 0, slightly weaker x = 10

slightly weaker x = 0, weak x = 10

These have solutions{x 7→ 0} and {x 7→ 10} respectively, so the set of TLEB solutions to the

original hierarchy is{{x 7→ 0} , {x 7→ 10}}.

85

A compound constraintis a conjunction of primitive constraints, in this case linear equalities

or inequalities. For compound constraints, when we break the strength ties in defining the set of

tilted-locally-error-better solutions, we insist on mapping each linear equality or inequality in a

compound constraint to an adjacent strength. (I have been a bit imprecise in the use of the term

“constraint” in this chapter, sometimes using it to denote a primitive constraint and sometimes

to denote a conjunction of primitive constraints. For the present definition, however, we need to

distinguish compound constraints that have been specifically identified as such by the user from

conjunctions of primitive constraints more generally, such as the constraintsCS andCU discussed

in Section 3.2.1.)

Now, to defineaddPointStays: in a more clean way, we could make each point stay a com-

pound constraint. To illustrate why this works, consider the midpoint example again. We have

two endpointsp1 and p2, and a midpointm. There are constraints(p1.x+p2.x)/2 = m.x and

(p1.y+p2.y)/2 = m.y, and we are editingm. Then the stays onp1 andp2 will each be compound

constraints:

weak (stay p1.x & stay p1.y)

weak (stay p2.x & stay p2.y)

In defining the set of tilted-locally-error-better solutions, the total orderings of these constraints

that we will consider have the stays onp1.x andp1.y both stronger than those onp2.x andp2.y,

or both weaker. Thus, we produce the desired result.

It is not sufficient just to define a notion of “compound constraint” without adding the notion

of tilting. Otherwise if we were using locally-error-better, we would just sum the errors of the

primitive constraints which would allow us to trade off the errors arbitrarily; we could still satisfy

the stay on thex component of one point and they component of another.

Regarding other comparators, tilting is incompatible with the weighted-sum comparator. Using

tilting to break a tie between two constraints with the same strength and weight could lead to

incorrect results because one of the constraints would dominate a third constraint with the same

strength and larger weight. In any case, the weights already can be used to break ties among

constraints with the same strength.

86

3.5 Empirical evaluation

Cassowary has been implemented in Smalltalk, C++, and Java. I ran some benchmarks using

test problems that tried to add 300 randomly-generated constraints using 300 variables, and 900

randomly-generated constraints using 900 variables.

With the Smalltalk implementation of Cassowary on the 300-constraint benchmark problem,

adding a constraint takes on average 38 msec (including the initial solve), deleting a constraint

46 msec, and resolving as the point moves 15 msec. (Stay and edit constraints are represented

explicitly in this implementation, so there were also stay constraints on each variable, plus two

edit constraints, for a total of 602 constraints minus the constraints that, if added, would have

resulted in an unsatisfiable system.) For the 900 constraint problem, adding a constraint takes on

average 98 msec, deleting a constraint 151 msec, and resolving as the point moves 45 msec. These

tests were run using an implementation in OTI Smalltalk Version 4.0 running on a IBM Thinkpad

760EL laptop computer.

For the C++ implementation on the problem with 900 constraints and variables, adding a con-

straint takes 15 msec, deleting a constraint 1. 2 msec, and resolving as the point moves 1. 4 msec.

These tests were run on a Pentium III/450 running Linux 2.2.5 and compiled with GCC-2.95.2.

The Java implementation under the basic Sun JDK 1.2 (no JIT compiler) is about 3 to 8 times

slower than the C++ implementation.

The various implementations of Cassowary are actively being used. A Scheme wrapping of

the C++ implementation is used in SCWM, the Scheme Constraints Window Manager (Chap-

ter 4). I have also embedded the C++ implementation in a prototype web browser that supports my

constraint-based extension to Cascading Style Sheets (Chapter 5), and in a prototype implementa-

tion of a constraint extension to Scalable Vector Graphics, CSVG (Chapter 6). A demonstration

Constraint Drawing Application using the Java implementation was written by Michael Noth and is

included with the Cassowary toolkit. Another Cassowary application (developed using a different

Java implementation) is a web authoring tool [16] in which the appearance of a page is deter-

mined by the combination of constraints from both the web author and the viewer. Cassowary

has also been used in a non-interactive application to perform consistency checks in a planning

87

application [145].

3.6 Summary

Cassowary is a constraint satisfaction algorithm specialized for interactive user interfaces that han-

dles simultaneous linear equations and inequalities. Because of the minimal update of the tableau

which is performed, it is (perhaps surprisingly) fast on the operation of incrementally resolving the

system. That operation’s efficiency is crucial for interactive redrawing diagrams during editing.

Additionally, because Cassowary handles cycles in the constraint graph without difficulty, users

of the Cassowary toolkit can concentrate on exploiting the additional expressiveness that the library

provides; the declarative nature of constraints is not undermined by a need to understand the algo-

rithm. Cassowary has proven to be efficient and expressive enough to be used in many applications,

including those described in the following three chapters.

88

Chapter 4

THE SCHEME CONSTRAINTS WINDOW MANAGER

4.1 Introduction

I desired a platform for researching advanced window layout paradigms, including the use of con-

straints. With constraints, related windows can be grouped together visually, subsets of windows

can be tiled (instead of overlapping), and other layout desires can be maintained.

Typical window management applications for the X windows system are written entirely in a

low-level systems language such as C or C++. Because the X windows libraries have a native C

interface, using C is justified. However, a low-level language is far from ideal when prototyping

implementations of sophisticated window manager functionality. For these purposes, a higher-

level language is much more appropriate, powerful, and satisfying.

Using C to implement a highly-interactive application also complicates extensibility and cus-

tomizability. To add a new feature, the user likely must write C code, recompile, relink, and restart

the application before changes are finally available for testing and use. This development cycle is

especially problematic for software such as a window manager that generally is expected to run

for weeks at a time. Additionally, maintaining all the features that any user desires would result in

terrible code bloat.

An increasingly popular solution to these problems is the use of a scripting language on top of

a core system that defines new domain-specific primitives. A prime example of this architecture

is Richard Stallman’s GNU Emacs text editor [132]. In the twenty years since the introduction of

Emacs, numerous extensible scripting languages have evolved including Tcl [117], Python [95],

Perl [142], and Guile [67, 123]. Each of the first three languages was designed from scratch with

scripting in mind. In contrast, Guile—the GNU Ubiquitous Intelligent Language for Extension—

takes a pre-existing language, Scheme, and adapts it for use as an extension language.

Because I am interested in practical use of constraints, I decided to target the X windows system

89

and build a complete window manager for X/11. I chose to use Guile/Scheme as the extension

language for my project named SCWM—the Scheme Constraints Window Manager [5, 6]. The

most notable feature of SCWM is constraint-based layout. Whereas typical window management

systems use only direct manipulation [129] of windows, SCWM also supports a user-interface for

specifying constraints among windows that it then maintains using Cassowary (Chapter 3). Much

of the advanced functionality of SCWM is implemented in Scheme, thus exploiting the embedded-

extension-language architecture.

The next section discusses some background issues. Section 4.3 describes the SCWM system in

detail and discusses some of the benefits and difficulties that arise in using Guile/Scheme. Section

4.4 describes the constraint-based capabilities of SCWM. Section 4.6 mentions related work, and

Section 4.7 discusses possible future work on SCWM.

4.2 Background

SCWM leverages numerous existing technologies to provide its infrastructure and support its ad-

vanced capabilities.

4.2.1 X Windows andfvwm2

A fundamental design decision for the X windows system [115] was to permit an arbitrary user-

level application to manage the various application windows. This open architecture permits great

flexibility in the way windows look and behave.

X window managers are complex applications. They are responsible for decorating top-level

application windows (e.g., drawing labelled titlebars with buttons), permitting resizing and moving

of windows, iconifying, tiling, cascading windows, and much more. Many Xlib library functions

wrapping the X protocol are specific to the special needs of window managers. Because my goal

is to do interesting research beyond that of modern window managers, I used an existing popular

window manager,fvwm2 , for a starting point [51]. In 1997 when the SCWM project began,fvwm2

was arguably the most used window manager in the X windows community. It supports flexible

configuration capabilities via a per-user.fvwm2rc file that is loaded once whenfvwm2 starts.

To tweak parameters, end-users edit their.fvwm2rc files using an ordinary text editor, save the

90

changes, then restart the window manager to activate the changes. Thefvwm2 configuration

language supports a very restricted form of functional abstraction, but lacks loops and conditionals.

Despite these shortcomings,fvwm2 provides a good amount of control over the look of win-

dows. It also has evolved over the years to meet complex specifications (e.g., the Interclient Com-

munication Conventions Manual [121]) and to deal with innumerable quirks of applications. By

basing SCWM on fvwm2 , I leveraged those capabilities and ensured that SCWM was at least as

well-behaved asfvwm2 . My fundamental change tofvwm2 was to replace its ad-hoc configura-

tion language with Guile/Scheme [67].

4.2.2 Scheme for extensibility

Guile [67] is the GNU project’s R4RS-compliant Scheme [30] system designed specifically for

use as an embedded interpreter. Scheme is a very simple, elegant dialect of the long-popular Lisp

programming language. It is easy to learn and provides exceptionally powerful abstraction capa-

bilities including higher-order functions, lexically-scoped closures and a hygienic macro system.

Guile extends the standard Scheme language with a module system and numerous wrappers for

system libraries (e.g., POSIX file operations).

4.3 The system

SCWM is a complex software system that emphasizes extensibility and customizability to enable

sophisticated capabilities to be developed and tested quickly and easily. The window manager em-

braces the embedded-scripting language architecture first introduced by Emacs (Section 4.3.1)

and it further exploits Guile/Scheme’s support for dynamically-loadable binary modules (Sec-

tion 4.3.2).

This extra power and extensibility can complicate using the window manager. To simplify

configuration, SCWM provides developers with an easy way to define various options declaratively.

SCWM then automatically builds a graphical user-interface that enables end-users to manipulate

those parameters easily (Section 4.3.3).

Another challenge was embedding Cassowary in SCWM reasonably non-invasively. Avoiding

altering all of the functions that access or mutate fields of the window structure required exploiting

91

some of the extensibility features built into the constraint solving toolkit (Section 4.3.4).

The current implementation of SCWM contains roughly 32,500 non-comment, non-blank lines

of C code, 800 lines of C++ code, and 25,000 lines of Scheme code. The Guile/Scheme system is

about 44,000 lines of C code and 11,500 lines of Scheme code. Finally, the Cassowary constraint

solving toolkit is about 9,500 lines of C++ code in its core, plus about 1,400 lines of C++ code in

the Guile wrapper.

4.3.1 Basic philosophy

My first version of SCWM was a simple derivative of its predecessor,fvwm2 , with the ad-hoc

configuration language replaced by Guile/Scheme. Likefvwm2 , SCWM reads a startup file con-

taining all of the commands to initialize the settings of various options. Mostfvwm2 commands

have reasonably straightforward translations to SCWM expressions. For example, the following

fvwm2 configuration lines set the default coloring style for windows, choose the colors for the

highlighted window, define a function, and bind a key to that function.

Style "*" ForeColor black
Style "*" BackColor grey76

HilightColor white navyblue

AddToFunc Raise-and-Stick
+ "I" Raise
+ "I" Stick

Key s WT CSM Function Raise-and-Stick

Those lines are rewritten for SCWM in Guile/Scheme as:1

(window-style "*" #:fg "black"
#:bg "grey76")

(set-highlight-foreground! "white")
(set-highlight-background! "navyblue")

1Because thefvwm2 configuration language is so limited, it is possible to mechanically convert to SCWM com-
mands; I provide a reasonably-complete automated translator for this purpose.

92

SCWM_PROC(X_property_get,
"X-property-get",
2, 1, 0,

(SCM win, SCM name, SCM consume_p))
/** Get X property NAME of window WIN. */
#define FUNC_NAME s_X_property_get
{

SCM answer;
VALIDARG_WIN_ROOTSYM_OR_NUM_COPY(1,win,w);
VALIDARG_STRING_COPY(2,name,aprop);
VALIDARG_BOOL_COPY_USE_F(3,consume_p,del);
...
XGetWindowProperty(...);
... answer = ...;
return answer;

}
#undef FUNC_NAME

Figure 4.1: An example SCWM primitive.

(define*-public (window-class #&optional (win (get-window)))
"Return the class of window WIN."
(X-property-get win "WM_CLASS"))

Figure 4.2: The “window-class ” procedure.

93

(define* (raise-and-stick
#&optional (win (get-window)))

(raise-window win)
(stick win))

(bind-key ’(window title) "C-S-M-s"
raise-and-stick)

The simpler and more regular syntax is more convenient for the end-user. An even greater

advantage of using a real programming language instead of a static configuration language stems

from the ability to extend the set of commands (either by writing C or Scheme code) and to com-

bine those new procedures arbitrarily.

Adding a new SCWM primitive is easily done by writing a new C function that registers itself

with the Guile interpreter. For example, after implementing an “X-property-get ” primitive in

C (Figure 4.1), we can write a new procedure to report a window’s class, which is just the value of

its WMCLASSproperty (Figure 4.2). Then we can use thatwindow-class procedure interactively

by writing:

(bind-key ’all "C-S-M-f"
(lambda ()

(let* ((win (window-with-focus))
(class (window-class win)))

(if (string=? class "Emacs")
(resize-window 500 700 win)
(resize-window 400 300 win)))))

The above expressions, when evaluated in SCWM’s interpreter, will make the user’s “Control +

Shift + Meta + f ” keystroke resize the window to 500× 700 pixels if the currently-focused

window is anEmacs application window, or 400× 300 pixels otherwise.

SCWM’s extensible architecture also allows Guile extensions to be accessible from the window

manager. Via standard Guile modules, SCWM can read and parse web pages, download files via ftp,

do regular expression matching, and much more. In fact, nearly all of the user-interface elements

in SCWM are built usingguile-gtk , a Guile wrapper of the GTk+ toolkit.

94

4.3.2 Binary modules

Because each user only needs a subset of the full functionality that SCWM provides, it is important

that users only pay for the features they require (in terms of size of the process image). Guile,

unlike Emacs Lisp, allows new primitives to be defined by dynamically-loadable binary modules.

Without this feature, all primitives would need to be contained in the SCWM core, thus complicat-

ing the source code and increasing the size of the resulting monolithic system.

The voice recognition module based on IBM’s ViaVoicetm software illustrates the benefits of

dynamically-loaded extensions. Some users do not to use that feature—perhaps because the library

is not available on their platform or perhaps because they have no audio input device. Those users

will never have the module’s code loaded. Additionally, if ViaVoice does not exist at compile time,

the voice recognition module will not even be built.

Implementing the module was also straightforward. After getting a sample program for the

voice recognition engine working, it required less than six hours of development effort to wrap

the core functionality of the engine with a Scheme interface. A grammar describes the various

utterances that SCWM understands, and the C code asynchronously invokes a Scheme procedure

when a phrase is recognized. Because those action procedures are written in Scheme, the responses

to phrases can be easily modified and extended without even restarting SCWM.

4.3.3 Graphical configuration

Another example of the extensibility that Guile provides SCWM is thepreferences system for

graphical customization. Novice SCWM users are unlikely to want to write Scheme code to con-

figure the basic settings of their window manager, such as the background color of the currently-

active window’s titlebar. A graphical user interface is necessary to manage these settings, but there

are potentially a huge number of configurable parameters. Undisciplined maintenance of a user

interface for those options would be tedious and error-prone.

Fortunately, SCWM can leverage its Scheme extension language to ease these difficulties. The

defoption module provides a macrodefine-scwm-option that permits declarative specifi-

95

Figure 4.3: The automatically-generated options dialog.

cation of a configuration option.2 To expose a graphical interface to setting the*highlight-

background* configuration variable, the SCWM developer need simply write:

(define-scwm-option
highlight-background "navy"

"The bg color for focused window."
#:type ’color
#:group ’face
#:setter (lambda (v)

(set-highlight-background! v))
#:getter (lambda () (highlight-background)))

This code states that*highlight-background* is an end-user configurable variable that will

contain a value that is a color. It also specifies that the variable can be grouped with other variables

into a face category. Finally, setter and getter procedures are specified to teach SCWM how to

alter and retrieve the value.

Thepreferences module then accumulates all of these specifications and dynamically gen-

erates the user interface shown in Figure 4.3.3 This modular approach also enforces the separation

of the visual appearance from the desired functionality—a visually-distinct notebook-style inter-

face with the same functionality is also available.

2Recent versions of Emacs [132] provide a similar feature in their “customize” package. The layout of their user-
interfaces is simpler, though, as no attempt is made to create a fully graphical interface.

3The user interface is written in guile-gtk, a Guile wrapper of the GTk+ widget toolkit [66] that integrates seamlessly
with SCWM.

96

4.3.4 Connecting to Cassowary

The most important module for my research on advanced window layout paradigms is the wrapper

of the Cassowary constraint solving toolkit. To connect the constraint solver with the window

manager, the variables known to the solver must relate to aspects of the window layout. Each

application window object contains four constrainable variables:x , y (the offsets of the window

from the top-left corner of the virtual desktop); andwidth , height (the dimensions of the window

frame in pixels). When Cassowary finds a new solution to the set of constraints, it invokes a hook

for each constraint variable whose value it changes, and invokes another hook after all changes

have been made. For SCWM, the constraint-variable-changed hook adds the window that embeds

that constraint variable to its “dirty set,” and the second hook repositions and resizes all of the

windows in the dirty set.

In each window object, the constrainable variables that correspond to the window’s position

and size mirror the ordinary integer variables that the rest of the application uses. The hooks copy

the new values assigned to the constrainable variables into the ordinary variables. This technique

avoids modifying the vast majority of the code that manipulates and manages windows. (Bjorn

Freeman-Benson discusses these issues in greater detail [47].)

To make it easy for developers to express constraints among windows, the constraint variables

embedded in each window are available to Scheme code via the accessor primitiveswindow-

clv- {xl,xr,yt,yb,width,height }, where, for example,-xl names thex coordinate of the

left side of the window and-yb abbreviates they coordinate of the bottom of the window.4 Thus,

to keep the tops of two window objects aligned, we can use:

(cl-add-constraint solver
(make-cl-constraint

(window-clv-yt win1) =
(window-clv-yt win2)))

Although these primitive constraint-creation constructs are sufficient for specifying desired rela-

tionships, end-users need a higher-level interface to make use of the solver in their daily activities.

The next section describes the graphical interface I built on top of these primitives.

4For each window, explicit constraintsxr = x + width andyb = y + height are added automatically
by SCWM.

97

Figure 4.4: SCWM constraint toolbar. The text describes the constraint classes in the same order
as they are laid out in the toolbar (from left to right).

4.4 Constraints for layout

Ordinary window managers permit only direct-manipulation as a means of laying out their win-

dows. Although this technique is useful, a constraint-based approach provides a more dynamic and

expressive system. In SCWM, I use my Cassowary constraint solving toolkit described in Chap-

ter 3 and Section 4.3.4. On top of the primitive equation-solving capabilities of Cassowary, SCWM

adds a graphical user interface that employs an object-oriented design. I specify numerous con-

straint classes representing kinds of constraint relationships, and instances of each class are added

to the system for maintaining relationships among actual windows. The interface allows users to

create constraint objects, to manage constraint instances, and to create new constraint classes from

existing classes by demonstration.

4.4.1 Applying constraints

Applying constraints to windows is done using a toolbar. Each constraint class in the system is

represented by a button on the toolbar (Figure 4.4). The user applies a constraint by clicking a

button, then selecting the windows to be constrained. Alternatively, the user can first highlight the

windows to be constrained and then click the appropriate button. Icons and tooltips with descriptive

text assist the user in understanding what each constraint does. I consulted with a graphic artist on

the design of the icons in an effort to make them intuitive and attractive. Preliminary user studies

have demonstrated that users can determine the represented relationship reasonably well from the

icons even without the supporting tooltip text.

I provide the following constraint classes in SCWM. Many interesting relationships are either

present or can be created by combining classes in the list.

Constant Height/Width Sum Keep the total of the height/width of two windows constant.

98

Horizontal/Vertical Separation Keep one window always to the left of or above another.

Strict Relative Position Maintain the relative positions of two windows.

Vertical/Horizontal Maximum Size Keep the height/width of a window below a threshold.

Vertical/Horizontal Minimum Size Keep the height/width of a window above a threshold.

Vertical/Horizontal Relative Size Keep the change in heights/widths of two windows constant

(i.e., resize them by the same amount, together).

Vertical/Horizontal Alignment Align the edge or the center of one window along a vertical/

horizontal line with the edge or center of another window.

Anchor Keep a window in place.

Some of these constraint types can constrain windows in several different ways. For example,

the “Vertical Alignment” constraint can align the left edge of one window with the right edge of

another or the right edge of one window with the middle of another. Users specify the parameters

of the relationship by using window “nonants,” the ninefold analogue of quadrants (Figure 4.5).

The nonant that the user clicks in dictates the part of the window to which the constraint applies.

For example, if the user selects the “Vertical Alignment” constraint and chooses the first window

by clicking in any of the east nonants, and the second window by clicking on its left edge, the

resulting constraint will align the right edge of the first window in with the left edge of the second.

This technique makes some constraint classes, such as alignment, more generally useful. It also

decreases the number of buttons on the toolbar, which could otherwise become unwieldy with

many narrowly-applicable constraint classes.

4.4.2 Managing constraints

Once a constraint is applied, the user still needs to be able to manage it. Users may wish to disable

the constraint temporarily or remove it entirely. They may encounter an odd behavior while they

99

N NENW

W C E

SW S SE

3 4 5

6 7 8

0 1 3

Figure 4.5: The nine nonants of a window.

are moving or resizing a window and want to discover which constraint(s) caused the unexpected

result, or they may simply be curious to know what constraints are applied to a given window and

how that window will interact with other windows. My constraint investigation interface allows

for all of these kinds of interactions.

The constraint investigation window allows the user to enable or disable constraints using

checkboxes, and to remove constraints using a delete button. The window is dynamically updated

as constraints are applied and removed, and changes made in the investigator are immediately

reflected in the layout of windows.

When the user moves her mouse pointer over a constraint in the investigator, the representation

of that constraint is drawn directly on the windows related by the constraint (Figure 4.6). This hint

makes it easy for the user to make the correct associations between windows and constraints. Each

constraint class defines its own visual representation, which in most cases closely matches the icon

in the toolbar.

Enabling or disabling constraints can result in global rearrangements of windows and large

changes in position. To make these discontinuities less confusing, SCWM animates windows flu-

idly from their old positions and sizes to their new configuration. The animations borrow features

from the Self programming environment that mimic cartoon-style animation [26].

4.4.3 Constraint abstractions

A problem with the interface as described thus far is that the basic constraint classes, such as

“Vertical Alignment” and “Horizontal Separation,” are not always sufficient to convey a user’s

100

Figure 4.6: Visual representation of constraints. XTerm A is constrained to be to the left of XTerm
B, and above XTerm C. Additionally, XTerm C is required to have a minimum width, and the
XEmacs window’s south and east edges are anchored at their current locations. The constraint
investigator that allows users to manage the constraints instances appears in the bottom left of the
screen shot.

intention fully. My own use showed that often one needs to combine several constraints to obtain

the desired behavior. A good example of this situation is tiling (Figure 4.7), where two or more

windows are aligned next to each other such that they appear to become a window unit of their

own. A tiling configuration for two windows can take from three to five constraints to implement.

Adding the constraints is tedious when tiling many windows, or when repeatedly tiling and untiling

two windows. Certainly a “tiled windows” constraint class could be hard-coded into the system,

but that just postpones the problem—some means of abstracting relationships should be provided

to the end-user.

A solution to this problem is to support constraint “compositions.” A composition is created

using a simple programming-by-demonstration technique. SCWM records the user applying a con-

straint arrangement to some windows in the workspace. The constraints used and the relationships

created among the windows are saved into a new constraint class object, which then appears in the

101

Figure 4.7: Four windows tiled together. Unlike tiled-only window managers, SCWM permits
users to tile a subset of their windows; other windows could overlap arbitrarily.

toolbar like all other constraint classes. Clicking the button in the toolbar will prompt the user to

select a number of windows equal to that used in the recording. The constraints will then be applied

in the same order as before. Compositions allow users to accumulate a collection of often-used

constraint configurations that can then be easily applied.

4.4.4 Inferring constraints

The toolbar-based user interface allows flexible relationships to be specified, but many common

user desires reflect very simple constraints. For example, users may place a window directly

adjacent to another window and want them to stay together. Some windowing systems provide

a basic “snapping” behavior that recognizes when a user puts a window nearly exactly adjacent

to another window and then adjusts the window coordinates slightly to have them snap together

precisely.

In SCWM, I support a useful extension to basic snapping called “augmented snapping” [53].

Using this technique, the user has the option of transforming a snapped-to relationship to a persis-

102

tent constraint that is then maintained during subsequent manipulations. When a snap is performed,

instead of simply moving the window, the appropriate constraint object is created and added to the

system. Such inferred constraints can be manipulated via the constraint investigator described ear-

lier. They also can be removed by simply “ripping-apart” the windows by holding down theMeta

modifier key while using direct manipulation to move them apart.

4.5 Usability study

I applied a discount usability approach [113] to improve the constraint interface to managing win-

dows. My goal was for users to require no documentation to benefit from the constraint features

of SCWM.

4.5.1 Methodology

Six advanced computer users were asked to think aloud while performing three tasks. Each task

consists of two parts: discovery and re-creation. First, users manipulate windows with constraints

already active to discover and describe those relationships (without use of the constraint inves-

tigator). After giving a correct description, they then use the interface on a second display to

constrain a fresh set of windows identically. Users were given only a very minimal description of

the interface.

The three constraint configurations tested were: 1) a Netscape Find dialog kept in the upper

right corner of the main browser window; 2) three windows kept right-aligned along the edge of

the screen such that none of the windows overlap nor leaves the top or bottom of the screen; and

3) two windows tiled horizontally.

4.5.2 Results

All users were able to complete their tasks. Discovering the constraints was straightforward—

manipulating the windows and observing the behavior was sufficient to deduce the relationships

already present. Re-creating the configurations was more troublesome, but users still succeeded.

They often used the investigator to remove incorrect constraints, and then they continued onward

103

with an alternate hypothesis.

4.5.3 Problems discovered

My study uncovered numerous usability issues. The most substantial problem involved selecting

window parts for the alignment constraints. When performing a vertical alignment, all that matters

is whether the user clicks on the left, center, or right third of the window—it is irrelevant whether

the click is in the top, middle, or bottom of the window. The interface, however, still highlighted

individual corners or edges as it does for anchor constraints where any of the nine positions is

significant. Users were confused by the UI distinguishing along the irrelevant vertical dimension.

I revised SCWM to highlight whole edges of windows when applying an alignment constraint.

When users began adding a constraint and wanted to cancel, they were unsure of how to abort

their action. Some users clicked on the toolbar thinking that it is a special window. Others dis-

covered that clicking on the background results in an error that terminates the operation. No user

realized that a right-click aborts, and because several users tried to abort by pressing theEscape

key, I now support that action to cancel a window selection.

4.5.4 Other observations

The users who performed best studied the tooltip help for each of the toolbar buttons before at-

tempting their first re-creation sub-task. I was surprised at the variety of constraints used in re-

creating the configurations: no user matched the expected solution on all three tasks. In particular,

the “strict relative position” constraint was used especially advantageously by users who chose to

configure windows manually before applying constraints to keep the windows as they were.

Not all users discovered the constraint-visualization feature of the investigator. I now draw the

visualizations whenever the user points at any part of the description, not just the enable checkbox.

Also, one user wanted to modify the parameters of a constraint in the investigator window directly.

104

4.6 Related work

There is considerable early work on windowing systems [63, 64, 97, 104, 106, 107]. Many of these

projects addressed lower-level concerns that a contemporary X/11 window manager can ignore.

An issue that does remain is tiled vs. overlapping windows. SCWM, like nearly all windowing

interfaces of the 1990s, chooses overlapping windows for their generality and flexibility. How-

ever, unlike other systems, SCWM’s constraint solver can permit arbitrary sets of windows to be

maintained in a tiled format of a given size.

Although there are dozens of modern window managers in common use on the X windowing

platform, only two (besidesfvwm2) are especially related to SCWM. GWM, the Generic Win-

dow Manager, embeds a quirky dialect of Lisp called “WOOL” for Window Object Oriented Lan-

guage [111]. It supports programmability, and some of its packages, such as directional focus

changing, inspired similar modules in SCWM. Sawfish [69] (formerly, Sawmill) is a new window

manager with an architecture similar toGWM and SCWM. Like GWM, it embeds its own unique

dialect of Lisp (called “rep”). Both embrace the extensibility language architecture and provide

low level primitives, then implement other features in their extension language. NeitherGWM

nor Sawfish has any constraint capabilities, though the hooks they provide can permit procedu-

ral implementations to approximate some of the simpler constraint-based behaviours that SCWM

implements.

Various other scripting languages exist. As mentioned previously, GNU Emacs and its Emacs

Lisp is similar to SCWM in philosophy. The earliest popular general-purpose scripting languages

is Tcl, the tool command language [117]. John Ousterhout, Tcl’s author, makes a compelling case

for the advantages of scripting [118]. Tcl is an incredibly simple but under-powered language

that only in the most recent versions includes real data structures. Subsequent similar languages

include Python [95] and Perl [142]; both are far more feature-full languages than Tcl, but all three

are more commonly used for scripting where the main control resides with the language. SCWM

and Emacs both exploit their languages for embedding and invoke scripting code in response to

events dispatched by C code.

There are also several other Scheme-based extension languages. Elk [42] is an early Scheme

105

intended as an extension language but is no longer well supported.SIOD (Scheme In One De-

fun) [131] is an especially compact implementation of Scheme that in return compromises com-

pleteness and standards-compliance; it is embedded in the popularGIMP (GNU Image Manipula-

tion Program) application [52] to support user-programmable transformations on images.

4.7 Summary and future work

One of the most useful aspects of this research has been the continuous feedback from end-users

throughout the development of SCWM. Since 1997, I have made the latest versions of SCWM and

Cassowary (along with all of their source code) available under the GNU General Public License on

the Internet, and have actively solicited feedback on support mailing lists. Many of the high-level

layout features were developed in response to real-world frustrations and annoyances experienced

either by the authors or by the SCWM user community. Although cultivating that community has

taken time and effort, I feel that the benefits from user feedback outweigh the costs.

Three years ago when I first began the SCWM project, fvwm2 was a good choice as a start-

ing point for a new window manager. Since then, though, several other window managers have

matured and are far more feature-full thanfvwm2 . Most notably, Enlightenment [68] and Win-

dowMaker [143] are popular powerful window managers that might prove useful as a starting point

for a new version of SCWM.

Perhaps the most significant implementation issue for SCWM is its startup time of nearly 20

seconds on a Pentium III 450 class machine. Loading the nearly 20,000 lines of Scheme code at

every restart is costly, and wasteful. To address this, one could add an Emacs-like “unexecing”

capability to dump the state of a SCWM process that has all of the basic modules loaded. Although

this would increase the size of the executable, it also would substantially reduce startup delays.

Fortunately, after startup, SCWM’s performance is indistinguishable from other window managers

that are written entirely in C.

Another rich area for future work involves the constraint interface. Currently, only constraints

among windows are supported. It seems useful to permit the addition of “guide-line” and “guide-

point” elements and allow windows to be constrained relative to them. These could, for example,

be used to ensure that a window stays in the current viewport, or stays in a specific region of the

106

display. It would also be intriguing to investigate the possibility of ghost-frame objects that are

controlled exclusively by SCWM. These window frames could then hold real application windows

by dragging them into the frame. This feature would permit hierarchically organizing windows,

while still allowing full access to the constraint solver for non-hierarchical relationships.

I am also considering extending the voice-based interface to permit specifying constraints.

In SCWM, a user can center a window simply by saying aloud “Center current window.” The

voice recognition interface to window layout and control encourages the user to express higher

level intention: it is far more awkward to say “move window to 379, 522” than it is to say “move

window next to Emacs.” In this way, the voice interface usefully contrasts with direct manipulation

where exact coordinates naturally result from the interaction technique. Additionally, voice-based

interactions may prove especially valuable for disabled users for whom direct manipulation is

difficult.

Discerning a user’s true intention is an interesting complexity of the declarative specification

of the current constraints interface. Consider a user who is manipulating three windows,A, B, and

C. Suppose the user constrainsA to be to the left ofB, andB to the left ofC. Now suppose the

application displaying in windowB terminates, thus removing that window. Should windowA still

be constrained to be to the left of windowC? In other words, should the transitive constraint that

was implicit through windowB be preserved? The answer depends on the user’s underlying desire.

Providing higher-level abstractions for commonly-desired situations may alleviate this ambiguity.

For example, if the user had pressed a button to keep three windows horizontally non-overlapping

in a row, it is clear that windowB’s disappearance should not remove the constraint that window

A remain to the left ofC.

Finally, I am especially interested in combining my work on constraints and the web (Chapters

5 and 6) with this work on window layout. Web, window, and widget layout are all fundamentally

related, and their similarities should ideally be factored out into a unifying framework so that

advances made in any area benefit all kinds of flexible, dynamic two-dimensional layout.

107

Chapter 5

CONSTRAINT CASCADING STYLE SHEETS

5.1 Introduction

Since the inception of the Web there has been tension between the “structuralists” and the “design-

ers.” On one hand, structuralists believe that a Web document should consist only of the content

itself and tags indicating the logical structure of the document, with the browser free to determine

the document’s appearance. On the other hand, designers (understandably) want to specify the

exact appearance of the document rather than leaving it to the browser.

With the recent championing ofstyle sheetsby the World-Wide-Web Consortium (W3C), this

debate has resulted in a compromise. The web document proper should contain the content and

structural tags, together with a link to one or more style sheets that determine how the document

will be displayed. Thus, there is a clean separation between document structure and appearance,

yet the designer has considerable control over the final appearance of the document. W3C has

introducedCascading Style Sheets, first CSS 1.0 and now CSS 2.0 [19], for use with HTML

documents.

Despite the clear benefits of cascading style sheets, there are several areas in which the CSS 2.0

standard can be improved.

• The designer lacks control over the document’s appearance in environments different from

her own. For example, if the document is displayed on a monochrome display, if fonts are

not available, or if the browser window is sized differently, then the document’s appearance

will often be less than satisfactory.

• CSS 2.0 has seemingly ad hoc restrictions on layout specification. For example, a docu-

ment element’s appearance can often be specified relative to the parent of the element, but

generally not relative to other elements in the document.

108

• The CSS 2.0 specification is complex and sometimes vague. It relies on procedural descrip-

tions to understand the effect of complex language features, such as table layout. This makes

it difficult to understand how features interact.

• Browser support for CSS 2.0 is still limited. This is due in part to the complexity of the speci-

fication, but also likely because the specification does not suggest a unifying implementation

mechanism.

I argue that constraint-based layout provides a solution to all of these issues, because con-

straints can be used to specifydeclarativelythe desired layout of a web document. They allow

partial specification of the layout, which can be combined with other partial specifications in a

predictable way. They also provide a uniform mechanism for understanding layout and cascading.

Finally, constraint solving technology provides a unifying implementation technique.

I describe a constraint-based extension to CSS 2.0, calledConstraint Cascading Style Sheets

(CCSS). The extension allows the designer to add arbitrary linear arithmetic constraints to the style

sheet to control features such as object placement, and finite-domain constraints to control features

such as font properties. Constraints may be given a strength, reflecting their relative importance.

They may be used in style rules in which case rewritings of the constraint are created for each

applicable element. Multiple style sheets are available for the same media type (e.g., paper vs.

screen) with preconditions on the style sheets determining which are appropriate for a particular

environment and user requirements.

My main technical contributions described in this chapter are:

• A demonstration that constraints provide a powerful unifying formalism for declaratively

understanding and specifying CSS 2.0.

• A detailed description of a constraint-based style sheet model, CCSS, which is compatible

with virtually all of the CSS 2.0 specification. CCSS allows more flexible specification of

layout, and also allows the designer to provide multiple layouts that better meet the desires

of the user and environmental restrictions.

109

• A prototype extension of the Amaya browser that demonstrates the feasibility of CCSS. The

prototype makes use of the Cassowary (Chapter 3) and a simple one-way binary acyclic

finite-domain solver based on BAFSS [94].

5.2 Background

Cascading Style Sheets(CSS 1.0 in 1997 and CSS 2.0 in 1998) were introduced by the W3C in

association with the HTML 4.0 standard. In this section, I review relevant aspects of CSS 2.0 [20]

and HTML 4.0 [33].

CSS 2.0 and HTML 4.0 provide a comprehensive set of “style” properties for each type of

HTML tag. By setting the value of these properties the document author can control how the

browser will display each element. Broadly speaking, properties either specify how to position the

element relative to other elements, e.g.text-indent , margin , or float , or how to display the

element itself, e.g.font-size or color .

Although the author can directly annotate elements in the document with style properties, CSS

encourages the author to place this information in a separate style sheet and then link or import

that file. Thus, the same document may be displayed using different style sheets and the same style

sheet may be used for multiple documents, easing maintenance of a uniform look for a web site.

A style sheet consists ofrules. A rule has aselectorthat specifies the document elements to

which the rule applies, anddeclarationsthat specify the stylistic effect of the rule. The declaration

is a set ofproperty/valuepairs. Values may be either absolute or relative to the parent element’s

value.

For instance, the style sheet in Figure 5.2 has three rules. The first uses the selectorH1 to

indicate that it applies to all elements with tagH1 and specifies that those first-level headings

should be displayed using a 13 pt font. The second rule specifies that paragraph elements should

use an 11 pt font. The third rule specifies the appearance of text in aBLOCKQUOTE, specifying that

the font-size should be 90% of that of the surrounding element.

We can use this style sheet to specify the appearance of the HTML document shown in Fig-

ure 5.1. Notice the link to the style sheet and that each element includes anID attribute since I will

110

<HTML> <HEAD>
<TITLE>Simple Example</TITLE>
<LINK REL="stylesheet"

HREF="simple.css"
TYPE="text/css"> </HEAD>

<BODY>
<H1 ID=h>Famous Quotes</H1>
<P ID=p> At a party at Blenheim Palace,

Lady Astor said to
Winston Churchill:

<BLOCKQUOTE ID=q1>
If I were married to you, I’d put
poison in your coffee. And he responded:
<BLOCKQUOTE ID=q2>

If you were my wife, I’d drink it.
</BLOCKQUOTE>

</BLOCKQUOTE>
</P>

</BODY>
</HTML>

Figure 5.1: Example HTML Document

H1 { font-size: 13pt }
P { font-size: 11pt }
BLOCKQUOTE { font-size: 90% }

Figure 5.2: A simple Cascading Style Sheet example, simple.css

111

refer to them later.1

Selectors come in three main flavors:type, attribute, andcontextual. These may be combined

to give more complex selectors. We have already seen examples of a type selector in which the

document elements are selected by giving the “type” of their tag. For example, the type-selector

H1 refers to all first-level heading elements. The wildcard type, “* ”, matches all tags.

Attribute selectors choose elements based on the values of two attributes that each element in

the document tree may optionally provide:CLASSand ID . Multiple elements may specify the

sameCLASSvalue, while theID value should be unique.

Selection based on theCLASSandID attributes provides considerable power. By usingCLASS

attributes and selectors, the author can categorize various document elements into groups and then

apply different formatting to each of the groups. Similarly, by usingID attributes and selectors,

the author can single out document elements for special formatting and then refer to them from

the style sheet. Elements with a specific class value are selected using the syntax “. class”, while

instance ids are selected with “#id”.

Contextual selectors allow the author to take into account where the element occurs in the

document, i.e. its context. They are based on the document’sdocument tree, which captures the re-

cursive structure of the tagged elements. A context selector allows selection based on the element’s

ancestors in the document tree.

For instance, the document in Figure 5.1 has the document tree shown in Figure 5.3. If we

want to ensure the innermost block quote does not have its size reduced relative to its parent, we

could use

BLOCKQUOTE BLOCKQUOTE { font-size: 100% }

Less generally, we could individually override the font size for the secondBLOCKQUOTEby

using a rule with anID selector:

#Q2 { font-size: 100% }

1Marking all elements withID attributes defeats the modularity and re-use benefits of CSS; I over-useID tags here
strictly as an aid to discussing the examples.

112

HTML

HEAD BODY

H1 P

BLOCKQUOTE

BLOCKQUOTE

LINKTITLE

Figure 5.3: Document tree for the HTML of Figure 5.1.

Many style properties are inherited by default from the element’s parent in the document tree.

Generally speaking, properties that control the appearance of the element itself, such asfont-

size , are inherited, while those that control its positioning are not.

As another example, consider the HTML document shown in Figure 5.4. We can use a style

sheet to control the width of the columns in the table. For example,table.css (Figure 5.5)

contains rules specifying that the elements of the classesmedcol andthincol have widths 30%

and 20% of their parent tables, respectively. (Note the use of the class selector “. ” syntax).

One of the key features of CSS is that it allows multiple style sheets for the same document.

Thus a document might be displayed in the context of the author’s special style sheet for that

document, a default company style sheet, the user’s style sheet and the browser’s default style

sheet. This is handled in CSS bycascadingthe style sheets, permitting each of the sheets to affect

the final rendering.

Cascading, inheritance, and multiple style sheet rules matching the same element may mean

that there are conflicts among the rules as to what value a particular style property for that element

should take. The exact details of which value is chosen are complex. Within the same style

sheet, inheritance is weakest, and rules with more specific selectors are preferred to those with less

specific selectors. For instance, each of the rules

#Q2 { font-size: 100% }
BLOCKQUOTE BLOCKQUOTE { font-size: 100% }

is more specific than

113

<HTML> <HEAD>
<TITLE>Table Example</TITLE>
<LINK REL="stylesheet"

HREF="table.css"
TYPE="text/css"> </HEAD>

<BODY>
<TABLE ID=t>

<COL ID=c1 CLASS=medcol>
<COL ID=c2>
<COL ID=c3 CLASS=thincol>
<TR>

<TD COLSPAN=2>
</TD>

<TD></TD>
</TR>
<TR>

<TD>Text1</TD>
<TD>Text2</TD>
<TD>Text3</TD>

</TR>
</TABLE>

</BODY>
</HTML>

Figure 5.4: Example HTML Document with a Table

.medcol { width: 30% }

.thincol { width: 20% }

Figure 5.5: Stylesheet for table: table.css

114

BLOCKQUOTE { font-size: 90% }

Among style sheets, the values set by the designer are preferred to those of the user and browser,

and for otherwise equal conflicting rules, those in a style sheet that is imported or linked first

have priority over those subsequently imported or linked. However, a style sheet author may also

annotate rules with the strength!important , which will override this behavior. In CSS 2.0,

for rules designated with strength!important , user-specified rules take priority over designer-

specified rules.2

Despite its power, CSS 2.0 still has a number of limitations. One limitation is that a style

property may only be relative to the element’s parent, not to other elements in the document. This

can result in clumsy specifications, and makes some reasonable layout constraints impossible to

express. For example, it is not possible to require that all tables in a document have the same

width, and that this should be the smallest width that allows all tables to have reasonable layout.

With CSS 2.0, one can only give the tables the same fixed size or the same fixed percentage width

of their parent element.

The other main limitation is that it is difficult for the designer to write style sheets that degrade

gracefully in the presence of unexpected browser and user limitations and desires. For instance,

the author has little control over what happens if the desired fonts sizes are not available. Consider

the style sheetsimple.css again. Imagine that only 10 pt, 12 pt, and 14 pt fonts are available.

The browser is free to use 12 pt and 10 pt for headings and paragraphs respectively, or 14 pt and

12 pt, or even 12 pt and 12 pt. Part of the problem is that rules always give definite values to style

properties. When different style sheets are combined only one rule can be used to compute the

value. Thus a rule is either on or off, leading to discontinuous behavior when style sheets from the

author and user are combined. For instance, a sight-impaired user might specify that all font sizes

must be greater than 11 pt. However, if the designer has chosen sufficiently large fonts, the user

wishes to use the designer’s size. This is impossible in CSS 2.0.

2This seemingly-inconsistent relative ordering of the!important preferences was changed from CSS 1.0 to
guarantee that the user has ultimate control over the appearance of a document.

115

5.3 Constraint Cascading Style Sheets

My solution to these problems is to use constraints for specifying layout. The major advantage of

using constraints in this application is that they allow partial specification of the layout, which can

be combined with other partial specifications in a predictable way. In this section, I describe my

constraint-based extension to CSS 2.0, calledConstraint Cascading Style Sheets(CCSS).

One complication in the use of constraints is that they may conflict. To allow for this we use the

constraint hierarchyformalism [14]. In these examples we shall assume theweighted-sum-better

comparator that sums the errors in satisfying each of the constraints, weighting each error by the

strength of that constraint. By using an appropriate set of strength labels, I can model the behavior

of CSS 2.0.

5.3.1 A constraint view of CSS 2.0

Hierarchical constraints provide a simple, unifying way of understanding much of the CSS 2.0

specification. This viewpoint also suggests that constraint solvers provide a natural implementa-

tion technique. Each style property and the placement of each element in the document can be

modeled by a variable. Constraints on these variables arise from browser capabilities, default lay-

out behavior arising from the type of the element, from the document tree structure, and from the

application of style rules. The final appearance of the document is determined by finding a solution

to these constraints.

The first aspect of CSS 2.0 I consider is the placement of the document elements (i.e., page

layout). This can be modeled using linear arithmetic constraints. To illustrate this, let us examine

table layout—one of the most complex parts of CSS 2.0. The key difficulty in table layout is that it

involves information flowing bottom-up (e.g. from elements to columns) and top-down (e.g. from

table to columns). The CSS 2.0 specification is procedural in nature, detailing how this occurs.

By using constraints, we can declaratively specify what the browser should do, rather than how

to do it. Furthermore, the constraint viewpoint allows a modular specification. For example, to

understand how a complex nested table should be laid out, we simply collect the constraints for

each component, and the solution to these is the answer. With a procedural specification it is much

116

(1) #t[width] = #c1[width]+
#c2[width] + #c3[width] REQUIRED

(2) #c1[width] ≥ width(“Text1”) REQUIRED

(3) #c2[width] ≥ width(“Text2”) REQUIRED

(4) #c3[width] ≥ width(“Text3”) REQUIRED

(5) #c3[width] ≥ #i2[width] REQUIRED

(6) #c1[width] + #c2[width] ≥ #i1[width] REQUIRED

(7) #t[width] = 0 WEAK

(8) #c1[width] = 0. 3∗ #t[width] DESIGNER

(9) #c3[width] = 0. 2∗ #t[width] DESIGNER

Figure 5.6: Example layout constraints

harder to understand such interaction.

Consider the style sheettable.css (Figure 5.5) and the associated HTML document (Fig-

ure 5.4). The associated layout constraints are shown in Figure 5.6. The notation “#id[prop]”

refers to the value of the propertyprop for the presentation element corresponding to the document

element with IDid.3 Since we are dealing with a table, the system automatically creates a con-

straint (1) relating the column widths and table width.4 Similarly, there are automatically created

constraints (2–6) that each column is wide enough to hold its content, and (7) that the table has

minimal width. Constraints (8) and (9) are generated from the style sheet. Notice the different

constraint strengths: from weakest to strongest they areWEAK, DESIGNERandREQUIRED. Since

REQUIREDis stronger thanDESIGNER, the column will always be big enough to hold its contents.

TheWEAK constraint#t[width] = 0 cannot be satisfied exactly; the effect of minimizing its er-

ror will be to minimize the width of the table, but not at the expense of any of the other constraints.

These constraints provide a declarative specification of what the browser should do. This

approach also suggests an implementation strategy: to lay out the table, we simply use a linear

arithmetic constraint solver to find a solution to the constraints. The solver implicitly takes care of

the flow of information in both directions, from the fixed widths of the images upward, and from

3I use associative array-like syntax for referring to properties of elements to avoid the confusion that the alternative
“.selector” form would cause due to CSS’s pre-existing use of “.” as a class-name prefix in selectors of rules.

4For simplicity, I ignore margins, borders and padding in this example.

117

(1) #h[font-size]∈ {9, 10, 12, 16, 36, 72} REQUIRED

(2) #p[font-size]∈ {9, 10, 12, 16, 36, 72} REQUIRED

(3) #q1[font-size]∈ {9, 10, 12, 16, 36, 72} REQUIRED

(4) #q2[font-size]∈ {9, 10, 12, 16, 36, 72} REQUIRED

(5) #h[font-size] = 13 DESIGNER

(6) #p[font-size] = 11 DESIGNER

(7) #q1[font-size] = 0. 9∗ #p[font-size] DESIGNER

(8) #q2[font-size] = 0. 9∗ #q1[font-size] DESIGNER

Figure 5.7: Example finite domain constraints

the fixed width of the browser frame downward.

Linear arithmetic constraints are not the only type of constraints implicit in the CSS 2.0 spec-

ification. There are also constraints over properties that can take only a finite number of different

values, including font size, font type, font weight, and color. Such constraints are calledfinite do-

mainconstraints and have been widely studied by the constraint programming community [101].

Typically, they consist of adomain constraintfor each variable giving the set of values the variable

can take (e.g., the set of font sizes available) and required arithmetic constraints over the variables.

As an example, consider the constraints arising from the document in Figure 5.1 and style sheet

simple.css (Figure 5.2). The corresponding constraints are shown in Figure 5.7. The domain

constraints (1-4) reflect the browser’s available fonts. The remaining constraints result from the

style sheet rules. Note that the third rule generates two constraints (7) and (8), one for each block

quote element.

Both of the preceding examples have carefully avoided one of the most complex parts of the

CSS 2.0 specification: what to do when multiple rules assign conflicting values to an element’s

style property. As discussed earlier, there are two main aspects to this: cascading several style

sheets, and conflicting rules within the same style sheet.

We can model both aspects by means of hierarchical constraints. To do so, we need to re-

fine the constraint strengths we have been using. Apart fromREQUIRED, each strength is a

lexicographically-ordered tuple

118

#h[font-size] = 13 〈DESIGNER, 0, 0, 1〉
#p[font-size] = 11 〈DESIGNER, 0, 0, 1〉
#q1[font-size] = 0. 9∗ #p[font-size] 〈DESIGNER, 0, 0, 1〉
#q2[font-size] = 0. 9∗ #q1[font-size] 〈DESIGNER, 0, 0, 1〉
#q2[font-size] = 1. 0∗ #q1[font-size] 〈DESIGNER, 0, 0, 2〉

Figure 5.8: Example of overlapping rules

〈cs, i, c, t〉.

The first component in the tuple,cs, is theconstraint importanceand captures the author-suggested

strength of the constraint and its position in the cascade. The constraint importance is one of

WEAK, BROWSER, USER, DESIGNER, DESIGNER-IMPORTANT, or USER-IMPORTANT (ordered

from weakest to strongest). The importanceWEAK is used for automatically generated constraints

only. The last three components in the tuple capture the specificity of the rule that generated the

constraint:i is the number ofID attributes,c is the number ofCLASSattributes, andt is the number

of tag names in the rule (i.e., the depth of the contextual selection).

As an example, consider the constraints arising from the document in Figure 5.1 with the style

sheet

H1 { font-size: 13pt }
P { font-size: 11pt }
BLOCKQUOTE { font-size: 90% }
BLOCKQUOTE BLOCKQUOTE { font-size: 100% }

The constraints and their strengths for those directly generated from the style sheet rules are shown

in Figure 5.8. Because of its greater weight, the last constraint listed will dominate the second to

last one, giving rise to the expected behavior—that the longer contextual selection of a blockquote

within a blockquote will govern the appearance of those nested blockquotes.

The remaining issue we must deal with is inheritance of style properties such as font size, and

the expression of this inheritance within our constraint formalism. For each inherited property, we

need to automatically create an appropriate constraint between each element and its parent. At first

119

BODY[font-size] = 12 〈BROWSER, 0, 0, 0〉
#h[font-size] = BODY[font-size] 〈WEAK, 0, 0, 0〉
#p[font-size] = BODY[font-size] 〈WEAK, 0, 0, 0〉
#q1[font-size] = #p[font-size] 〈WEAK, 0, 0, 0〉
#q2[font-size] = #q1[font-size] 〈WEAK, 0, 0, 0〉
#q1[font-size] = 8 〈DESIGNER, 0, 0, 1〉
#q2[font-size] = 8 〈DESIGNER, 0, 0, 1〉

Figure 5.9: Example of inheritance rules

glance, these should simply beWEAK equality constraints. Unfortunately, this does not model the

inherent directionality of inheritance.

For instance, imagine displaying the document in Figure 5.1 with the style sheet

BLOCKQUOTE { font-size: 8pt }

where the default font size is 12 pt. The scheme outlined above gives rise to the constraints shown

in Figure 5.9. One possible weighted-sum-better solution to these constraints is that the heading is

in 12 pt and the rest of the document (including the paragraph) is in 8 pt. The problem is that the

paragraph element #p has “inherited” its value from itschild, theBLOCKQUOTEelement #q1.

To capture the directionality of inheritance we useread-onlyannotations [14] on variables that

represent inherited attributes. Intuitively, a read-only variablev in a constraintc means thatc

should not be considered until the constraints involvingv as an ordinary variable (i.e., not read-

only) have been used to computev’s value.

To model inheritance, we need to add the inheritance equalities with constraint importance of

WEAK, and mark the variable corresponding to the parent’s property as read-only. The read-only

annotation ensures that the constraints are solved in an order corresponding to a top-down traversal

of the document tree. To achieve this, we modify the constraints in Figure 5.9 so that each font

size variable on the right hand side has a read-only annotation.

120

5.3.2 Extending CSS 2.0

I have shown how we can use hierarchical constraints to provide a declarative specification for

CSS 2.0. There is, however, another advantage in viewing CSS 2.0 in this light. The constraint

viewpoint suggests a number of natural extensions that overcome the limitations of the expressive-

ness of CSS 2.0 discussed previously.

As the above examples indicate, virtually all author and user constraints that are generated

from CSS 2.0 either constrain a style property to take a fixed value, or relate it to the parent’s

style property value. One natural generalization is to allow more general constraints, such as

inequalities. Another natural generalization is to allow the constraint to refer to other variables—

both variables corresponding to non-parent elements and to “global” variables.

In CCSS, I allow constraints in the declaration of a style sheet rule. The CSS-styleat-

tribute:value pair is re-interpreted in this context as the constraintattribute = value .

I prepend all constraint rules with theconstraint pseudo-property so that CCSS is backwards

compatible with browsers supporting only CSS. In a style sheet rule, the constraint can refer to

attributes ofparent andleft-sibling . For example:

P { constraint: font-size <= (parent[parent])[font-size] + 2 }

is a rule that applies constraints that relate the font-size of a paragraph element to the font-size of

its grandparent element.

CCSS style sheets also allow the author to introduce global constrainable variables using a new

@variable directive. A variable identifier is lexically the same as a CSSID attribute. The author

can express constraints among global constrainable variables and element style properties using a

new@constraint directive. There are also various global built-in objects (e.g.,Browser) with

their own attributes that can be used.

These extensions add considerable expressive power. For instance, it is now simple to specify

that all tables in the document have the same width, and that this is the smallest width that allows

all tables to have a reasonable layout:

@variable table-width;
TABLE { constraint: width = table-width }
@constraint table-width = 0 !weak;

121

Similarly we can specify two columnsc1 and c2 in the same (or different) tables have the

same width (the smallest for reasonably laying out both):

@constraint #c1[width] = #c2[width];

It also allows the designer to express preferences in case the desired font is not available. For

example adding

H1 { constraint: font-size >= 13pt }
P { constraint: font-size >= 11pt }

to simple.css (Figure 5.2) will ensure that larger fonts are used if 13 pt and 11 pt fonts are not

available.

Finally, a sight-impaired user can express the strong desire to have all font sizes greater than

12 pt:

* {constraint: font-size >= 12pt !important}

As long as the font size of an element is 12 pt or larger it will not be changed, but smaller fonts

will be enlarged.

The style sheet author is not allowed to explicitly specify a constraint to beREQUIRED—that

capability would admit the possibility of an unsatisfiable constraint system. Instead,REQUIRED

constraints are generated implicitly for capturing relationships inherent in the structure of the lay-

out, such as a table’s width being the sum of the widths of its columns.

Providing inequality constraints allows the author to control the document appearance more

precisely in the context of browser capabilities and user preferences. Additionally, CCSS allows

the author to give alternate style sheets for the same target media. Each style sheet can list precon-

ditions for their applicability using a new@precondition directive. For efficiency, the precon-

dition can only refer to various pre-defined variables. The values of these variables will be known

(i.e. they will have specific values) at the time the precondition is tested. For example:

@precondition Browser[frame-width] >= 800px;
@precondition ColorMonitor = True;

I extend the style sheet@import directive to permit listing multiple style sheets per line, and

the first applicable sheet is used (the others are ignored). If no style sheet’s preconditions hold,

none are imported. Consider the example directive

122

Figure 5.10: Screen shots of the prototype browser. In the view on the left, a narrow style sheet
is in effect because the browser width≤ 800 pixels, while on the right a wide style sheet is used.
Interactively changing the browser width dynamically switches between these two presentations.
In both figures, the first column is14 the width of the second column, which is twice the width of
the last column. On the left, the table consumes 100% of the frame width, but on the right, the
table width is the browser width minus 200 pixels. Also notice the changes in font size and text
alignment.

@import "wide.css", "tall.css", "small.css";

If wide.css ’s preconditions fail, buttall.css ’s succeed, the layout usestall.css . If, through

the course of the user resizing the top-level browser frame,wide.css ’s preconditions later become

satisfied, the layout does not switch to that style sheet unlesstall.css ’s preconditions are no

longer satisfied. That is, the choice among style sheets listed with one directive is only revisited

when a currently-used style sheet is no longer applicable.

As an example, consider a style sheet for text with pictures. If the page is wide, the images

should appear to the right of the text; if it is narrow, they should appear without text to the left; and

if it is too small, the images should not appear at all. This can be encoded as:

/* wide.css */
@precondition Browser[frame-width] > 550px;
IMG { float: right}

/* tall.css */
@precondition Browser[frame-width] <= 600px;
@precondition Browser[frame-height] > 550px;
IMG { clear: both; float: none}

123

/* small.css */
IMG { display: none }

Preconditions become even more expressive in the presence of support for CSS positioning [50]

and a generalizedflow property [21].

5.4 Implementation

5.4.1 Prototype web browser

I have implemented a representative subset of CCSS to demonstrate the additional expressiveness

it provides to web designers. My prototype is based on version 1.4a of Amaya [32], the W3

Consortium’s browser. Amaya is built on top of Thot, a structured document editor, and has partial

support for CSS1. Amaya is exceptionally easy to extend in some ways (e.g., adding new HTML

tags), and provides a stable base from which to build.

My support for constraints in Amaya covers the two main domains for constraints that we have

discussed: table widths (for illustrating page layout relationships) and font sizes (for illustrating the

solution of systems involving inherited attributes). In the prototype, HTML and CSS statements

can contain constraints and declare constrainable variables. In HTML statements, constrainable

variables, in addition to specific values, can be attached by name to element attributes (e.g., to the

“width” of a table column). When the constraints of the document force the values assigned to

variables to change, the browser updates its rendering of the current page, much as it does when

the browser window is resized (which often caused the re-solve in the first place).

I have also extended Amaya to support preconditions on style sheets and the generalized

“@import ” CCSS rule. The performance when switching among style sheets is similar to a

reload, and when the style sheets are cached on disk, performance is good even when switch-

ing style sheets during an interactive resize. (It may be useful to provide background pre-fetching

of alternate style-sheets to avoid latency when they are first needed.) See Figure 5.10 for screen

shots of an example using the prototype’s support for both table layout and preconditions. As the

support for CSS improves in browsers, more significant variations will be possible through the use

of the@precondition and extended@import directives.

124

I compared the performance of our prototype browser to an unmodified version of Amaya 1.4a,

both fully optimized, running on a PII/400 displaying across a 10Mbit network to a Tektronix X11

server on the same subnet. My test case was a small example on local disk using seven style

sheets. I executed 100 re-loads, and measured the total wall time consumed. The unmodified

browser performed each re-load and re-render in 190 ms, while the prototype took only 250 ms

even when sized to select the last alternative style sheet in each of three@import directives.

This performance penalty is reasonable given the added expressiveness and features the prototype

provides.

One of the most important benefits of re-framing CSS as constraints is that it provides an im-

plementation approach for even the standard CSS features. To simplify the prototype and ensure

it remains a superset of CSS functionality, I currently do not treat old-style declarations as con-

straints, but instead rely on the existing implementation’s handling of those rules. However, if

designed into a browser from the beginning, treating all CSS rules as syntactic sugar for underly-

ing constraints will result in large savings in code and complexity. The cascading rules would be

completely replaced by the constraint solver’s more principled assignment of values to variables,

and the display engine need only use those provided values, and redraw when the solver changes

the current solution.

5.4.2 Constraint solving algorithms

As mentioned previously, the semantics of the constraints is independent of the algorithms used

to satisfy them. Nevertheless must select an algorithm that is capable of efficiently finding solu-

tions to the constraints at interactive speeds. My implementation uses two algorithms: Cassowary

(Chapter 3) and a restricted version of BAFSS [94].

The Cassowary constraint solving toolkit handles linear arithmetic equality and inequality con-

straints. It supports the weighted-sum-better comparator [14]. As mentioned earlier, this compara-

tor computes the error for a solution by summing the product of the strength tuple and the error

for each constraint that is unsatisfied. To model the CSS importance rules in a hierarchy of con-

straint strengths, I encode the symbolic levels of importance as tuples as well; for example,USER-

IMPORTANT is 〈1, 0, 0, 0, 0, 0〉 andBROWSERis 〈0, 0, 0, 0, 1, 0〉. Thus, no matter what scalar error

125

a BROWSERconstraint has, it will never be satisfied if doing so would force aUSER-IMPORTANT

constraint to not be satisfied. Similarly the last three components of the strength tuple are encoded

as〈10i , 10c, 10t〉.5 Since the Cassowary toolkit operates on constraints with strengths that are a

singlen-tuple, I internally use 9-tuples to represent strengths—for example,

〈1, 0, 0, 0, 0, 0, 100, 101, 100〉

is the strength of a user-specified!important constraint whose selector only contains a single

class name.

BAFSS uses a dynamic programming approach to handle systems of font constraints which

are binary (i.e., a constraint with two variables) and for which the associated constraint graph is

acyclic. For the font constraints implied by CSS, we can simplify the algorithm because all of

the constraints relate a read-only size attribute in the parent element to the size attribute of a child

element. Given this additional restriction that all constraints are one-way, the algorithm is simple:

visit the variable nodes in topological order and assign each a value that greedily minimizes the

error contribution from that variable.

Both constraint solvers are implemented within the Cassowary Constraint Solving library de-

scribed in Chapter 3.

5.5 Related work

The most closely related research is earlier work by Borning, Lin, and Marriott on the use of

constraints for web page layout [15]. This system allowed the web page author to construct a

document composed of graphic objects and text. The layout of these objects and the text font size

were described in a separate “layout sheet” using linear arithmetic constraints and finite domain

constraints. Like CCSS, layout sheets had preconditions, controlling their applicability.

The work reported here, which focuses on how to combine constraint-based layout with CSS,

5This does not exactly match the CSS specificity rules. For example if the error in a constraint with strength
〈WEAK, 0, 0, 1〉 is 10 times greater than the error in a conflicting constraint with strength〈WEAK, 0, 0, 2〉, the first
constraint will affect the final solution. By choosing appropriate error functions we can make this unlikely to occur
in practice. However, the more general constraint hierarchy support may actually permit more desirable interactions
rather than the strict strength ordering imposed by CSS.

126

is complementary to previous research. One of the major technical contributions here is to provide

a declarative semantics for CSS based on hierarchical constraints; this issue was not addressed

in the prior work [15]. There are two fundamental differences between layout sheets and CCSS.

Layout sheets are not style sheets in the sense of CSS, since they can only be used with a single

document. Constraints only apply to named elements, and there is no concept of a style rule

that applies to multiple elements—the constraints that are used are exactly the constraints that the

author has specified. The other fundamental difference between the earlier work [15] and CCSS

is that the former has no analogue of the document tree. In essence, the document is modeled as a

flat collection of objects; there is no notion of inheritance, and nearly all layout must be explicitly

detailed in the layout sheet.

Cascading Style Sheets are not the only kind of style sheet. The Document Style Semantics

and Specification Language (DSSSL) is an ISO standard for specifying the format of SGML doc-

uments. DSSSL is based on Scheme, and provides both a transformation language and a style

language. It is very powerful but complex to use. More recently, W3C has begun designing the

XSL style sheet for use with XML documents. XSL is similar in spirit to DSSSL. PSL [98] is

another style sheet language; its expressiveness lies midway between that of CSS and XSL. The

underlying application model for all three is the same: take the document tree of the original doc-

ument and apply transformation rules from the style sheet in order to obtain the presentation view

of the document, which is then displayable by the viewing device. In the case of XSL, the usual

presentation view is an HTML document whose elements are annotated with style properties.

None of these other style sheet languages allow true constraints. Extending any of them to

incorporate constraints would offer many of the same benefits as it does for CSS: the ability to

flexibly combine user, browser, and designer desires and requirements, and a simple powerful

model for layout of complex objects, such as tables. The simplest extension is to allow constraints

in the presentation view of the document. (Providing constraints in the transformation rules would

seem to offer little advantage.) In the case of DSSSL a natural way to do this is to embed a

constraint solver into Scheme (as in SCWM, Chapter 4). In the case of XSL, since HTML is often

used as the targeted visual rendering language, the simplest change is to augment that language

to be HTML with CCSS style properties. Then the XSL translator would simply generate HTML

127

and a CCSS style sheet, with a CCSS-enhanced browser still performing the dynamic constraint

solving, rendering, and interaction.

5.6 Summary and future work

I have demonstrated that hierarchical constraints provide a unifying, declarative semantics for

CSS 2.0 and also suggest a simplifying implementation strategy. Furthermore, viewing CSS

from the constraint perspective suggests several natural extensions. I call this extension CCSS—

Constraint Cascading Style Sheets. By allowing true constraints and style sheet preconditions,

CCSS increases the expressiveness of CSS 2.0 and, importantly, allows the designer to write style

sheets that combine more flexibly and predictably with user preferences and browser restrictions. I

have demonstrated the feasibility of CCSS by modifying the Amaya browser. However, substantial

work remains to develop an industrial-strength browser supporting full CCSS, in part because of

Amaya’s lack of support for CSS 2.0. A more complete implementation will be especially useful

for investigating the important issue of how well the constraint systems and solver scale to larger,

more complicated designs that further exploit the constraint extensions.

Apart from improving the current implementation, there are two principal directions for further

extensions to CCSS. The first is to increase the generality and solving capabilities of the underlying

solver. For example, style sheet authors should be able to arbitrarily annotate variables as read-only

so that they have greater control over the interactions of global variables. Additionally, virtually

all CSS properties, such as color and font weight, could be exposed to the constraint solver once

other algorithms are integrated into the solving toolkit.

The second extension is to allow “predicate” selectors in style sheet rules. These selectors

would permit an arbitrary predicate to be tested in determining the applicability of a rule to an

element in the document structure tree. Predicate selectors can be viewed as a generalization of

the existing selectors; anH1 Pselector is applied only to nodesn for which the predicate “n[type]

= P and∃m parent-ofn such thatm[type] = H1” holds. These predicate selectors would allow the

designer to take into account the attributes of the selected element’s parents and children, thus, for

instance, allowing the number of items in a list to affect the appearance of the list (as in an example

used to motivate PSL [98]).

128

A final important area for future work is the design, implementation, and user testing of graph-

ical interfaces for writing and debugging Constraint Cascading Style Sheets and web pages that

use them.

129

Chapter 6

CONSTRAINT SCALABLE VECTOR GRAPHICS

6.1 Introduction

Scalable Vector Graphics (SVG) [44] is a language developed by the World Wide Web Consortium

(W3C) for describing two dimensional vector graphics. SVG is used for storage and distribution of

images on the web, and is increasingly well-supported by both commercial and free software. In

contrast with raster image formats such as GIF, JPEG, and PNG, which store a matrix of individual

pixels that compose an image, a Scalable Vector Graphic image contains instructions for resolution

independent rendering: the same SVG file will be shown in more detail when viewed at a higher

resolution (e.g., on a 1200 dots per inch typesetting device rather than a 75 dpi screen). A sample

SVG image appears in Figure 6.1.

SVG graphics provide numerous immediate benefits besides resolution independence. SVG

files are often smaller than an analogous raster image, thus web pages using them may take less

time to download. Because SVG is based on XML [22], SVG files are easy to exchange, process,

and analyze. SVG integrates well with Cascading Style Sheets (CSS) [20] specifications, thus

Figure 6.1: SVG image of a lion cub.

130

enabling some separation of the content of the graphic from the visual appearance of that image.

For example, the colors of a graphic can be specified in a style sheet that is independent of the

SVG file itself. SVG also preserves image structure at a higher level—for example, a web browser

can directly read the text included in an SVG figure. This ability, along with the separation of style

from content, dramatically improves the accessibility of images for users with color-blindness or

other visual impairments. Additionally, the Document Object Model (DOM) [2] and the SVG

DOM [44, Appendix B] can be used to manipulate the shapes in an image dynamically to create

animations and other effects.

6.1.1 SVG is not enough

Although the SVG format is a huge step forward for many kinds of images, we can do even better

for diagrammatic illustrations. Contrast the illustration in Figure 6.2 with the lion cub in Figure 6.1.

Figure 6.2 is a simpler image in which I provide a visualization of a class hierarchy. With SVG,

we have to specify the entire diagram fully and exactly by giving positions and sizes for all of the

elements: precisely one class hierarchy diagram is described.

Figure 6.2: SVG image diagramming the object hierarchy surrounding theJava.Text.Format

class. The SVG source for this image appears in Figure 6.3.

Full specification is important for a complex realistic image such as Figure 6.1, but is less im-

portant for many information visualization applications. Instead, in Figure 6.2, there are certain

131

properties of the layout that are important in conveying the desired information. For example, we

want the parent class “Object” to appear above its subclasses, and want lines to connect classes to

denote the inheritance relationship. If we were able to describe what is actually semantically im-

portant about a figure, we could have a single description that preserves flexibility for the renderer

and would generate Figure 6.2 or other variations of that illustration.

Constraints are a useful approach for allowing users to state their intentions more directly.

For example, “Format appears aboveDateFormat ” is a constraint. We can write the constraint

mathematically as:

Format.ybottom+ vert spacing≤ DateFormat.ytop

By stating declaratively how the two object attributes are to relate, we avoid having to give

explicit values to either. Instead, we can defer that task to a constraint satisfaction algorithm

that will assign values to variables. In this example, we can then use those value assignments to

determine where to position the names of the various classes in the hierarchy.

6.1.2 Contributions

I describe a constraint extension to Scalable Vector Graphics, called Constraint Scalable Vector

Graphics (CSVG). The extension allows CSVG images to use arbitrary linear arithmetic con-

straints to control the layout of shapes, lines, paths, and font sizes. With constraints, diagrams

can be under-specified, thus permitting the rendering engine greater flexibility when laying out the

illustration.

The main contributions described in this chapter are:

• a motivation for using constraints for certain kinds of SVG illustrations;

• a description of Constraint Scalable Vector Graphics as an extension of SVG, including a

Document Type Definition (DTD) for CSVG; and

• a prototype implementation of a CSVG viewer based on the CSIRO SVG viewer [120] and

Cassowary (Chapter 3).

132

6.2 Background

The Scalable Vector Graphics (SVG) language [44] is based on the eXtensible Markup Language

(XML) [22]. SVG also makes use of the Cascading Style Sheets (CSS) [20] standard for partially

separating visual presentation information from the basic image description itself. In this section,

I provide a brief overview of each of these standards.

6.2.1 XML: eXtensible Markup Language

XML is a standardized eXtensible Markup Language [22] that is a subset of SGML, the Standard

Generalized Markup Language [85]. The World Wide Web Consortium (W3C) designed XML to

be lightweight and simple, while retaining compatibility with SGML. Although HTML (Hyper-

Text Markup Language) is currently the standard web document language, the W3C is positioning

XHTML, an XML-based language, to be its replacement. While HTML permits authors to use

only a pre-determined fixed set of tags in marking up their document, XML allows easy specifi-

cation of user-defined markup tags adapted to the document and data at hand [60, 61]. XML can

thus be used as the basis for many languages describing arbitrary data, not just the single XHTML

language.

An XML document consists simply of text marked up with tags enclosed in angle braces. A

simple example appears in Figure 6.3.

The <svg> is an open tag for thesvg element. The</svg> at the end of the example is

the corresponding close tag. Text and other nested tags can appear between the open and close

constructs. In the example, thesvg contains 16 immediate children elements. Empty elements

are allowed and can be abbreviated with a specialized form that combines the open and close tags:

<tag-name /> (e.g., each of theline elements). Additionally, an XML open tag can associate

attribute–value pairs with an element. For example, the firsttext element has the value200 for

its x attribute. Attributes of an element are unordered and multiple values for the same attribute

name are disallowed. In contrast, child elements are ordered, and multiple child elements of the

same type may be permitted (e.g., there are eighttext children of thesvg element).

For an XML document to bewell-formed, the document must conform to the syntactic rules

133

<?xml version="1.0"?>
<!DOCTYPE svg SYSTEM "svg.dtd">
<svg width="4.5in" height="4in"

viewBox="0 0 100 100"
style="fill: none; font-size: 15;

stroke-width: 1; stroke: black;
text-anchor: middle">

<desc>The object hierarchy surrounding
the class "Java.text.Format"</desc>

<text x="200" y="30">Object</text>
<text x="200" y="90">Format</text>
<text x="60" y="150">DateFormat</text>
<text x="60" y="210">SimpleDateFormat</text>
<text x="200" y="150">MessageFormat</text>
<text x="380" y="150">NumberFormat</text>
<text x="310" y="210">DecimalFormat</text>
<text x="450" y="210">ChoiceFormat</text>
<line x1="200" y1="32" x2="201" y2="75"/>
<line x1="200" y1="92" x2="60" y2="135"/>
<line x1="200" y1="92" x2="201" y2="135"/>
<line x1="200" y1="92" x2="380" y2="135"/>
<line x1="60" y1="152" x2="61" y2="195"/>
<line x1="380" y1="152" x2="310" y2="195"/>
<line x1="380" y1="152" x2="450" y2="195"/>

</svg>

Figure 6.3: SVG source of the class hierarchy illustration shown in Figure 6.2. SVG is based on
XML.

required of XML documents (e.g., tags must be balanced and properly nested, and attribute values

must be of the proper form and enclosed in quotes).

A more stringent characterization of an XML document isvalidity. An XML document is valid

if and only if it both is well-formed and adheres to its specifieddocument type definition, or DTD.

A document type definition is a formal description of the grammar of the specific language to be

used by a class of XML documents. It defines all the permitted element names and describes the

attributes that each kind of element may possess. It also restricts the structure of the nesting within

a valid XML document. Figure 6.3 is valid with respect to the DTD that describes Scalable Vector

Graphics,svg.dtd [44, Appendix A].

134

6.2.2 SVG: Scalable Vector Graphics

SVG is an XML-based language for describing vector graphics. It was designed by the W3C

and is intended to be the standard format for all images on the Internet. Vector graphics provide

resolution independence—the description of the image is based on higher-level graphical elements,

rather than the pixels used to describe a raster image. SVG uses XML elements to represent basic

shapes, including rectangles, ellipses, lines, and polygons. It also supports the more general notion

of an arbitrary path that can represent an outline to be filled, stroked, or clipped to. SVG is very

similar in spirit to the PostScript page-description language [1], but uses XML syntax instead of

postfix notation.

An SVG element describes a shape to be rendered. For example:

<rect x="20" y="10" width="10" height="5"/>

describes a rectangle whose top-left is positioned at coordinate (20,10) with a width of 10 units,

and a height of 5 units. Lengths and coordinates can specify units explicitly, but when they are

omitted, the user space coordinate system is used [44, Ch.7]. Unfortunately, all basic shape objects

use their top-left as an anchor point, making it unduly cumbersome to position, for example, the

center of an object at a specific location.

An especially powerful SVG element ispath . Its d (for “data”) attribute contains a string that

encodes a command-based description of an arbitrary outline. For example, the element:

<path d="M 20 10 L 30 10 L 30 15 L 20 15 Z"/>

describes a rectangle path equivalent to the precedingrect element: firstMove to (20, 10), then

draw L ines to (30,10), (30,15), and (20,15), and finally close the path (Z). Uppercase command

characters designate the use of absolute coordinates, while lowercase denotes relative coordinates.

Otherpath sub-language commands includeCurve-to,Smooth curve-to,Quadratic Bezier curve-

to, and more.

Other important elements includedefs and use for defining objects and later referencing

them, image for embedding legacy raster image files (e.g., PNG or JPEG graphics),text for

including text, andg for grouping sub-elements to be rendered as a single entity.

135

A program that reads an SVG file has access to the internals of the image via the SVG Docu-

ment Object Model [44, Appendix B]. The SVG DOM is compatible with the basic XML DOM [2]

and is a proper extension of the DOM Core [77]. The DOM permits access to the SVG element

tree, including allowing the manipulation of element attributes. For example, to increase the size

of a text element, we can write the following code in ECMAScript [41] (a standardized version of

JavaScript).

e = document.getElementById("TextElement");
e.setAttribute("transform", "scale(2)");

and the selected element will be scaled to twice its normal size. The SVG DOM can be used in

combination with scripting and event handlers (e.g.,mousedown, onclick) to permit some useful

interactive capabilities.

SVG also contains several animation elements that describe time-based perturbation of the

containing object. These elements can be used to achieve motion along paths, the fading in or out

of objects, changes in color, and more. For example, to animate moving a rectangle horizontally

across the viewport to the right, we write:

<rect x="20" y="10" width="10" height="5"/>
<animate attributeName="x"

attributeType="XML"
begin="0s" dur="9s" fill="freeze"
from="20" to="120"/>

</rect>

Most elements contain attributes to control especially important properties of the described

object, such as its position and size. Numerous other properties of objects are set using a single

attribute calledstyle . That attribute is the access point to a powerful style description language

called Cascading Style Sheets.

6.2.3 CSS: Cascading Style Sheets

The Cascading Style Sheets recommendation provides a rich set of “style” properties for various

HTML and SVG tags. By setting the value of these properties, the document author can control

how the browser will display each element.

136

SVG images can directly annotate elements in the document with style properties via the

style attribute. Alternatively, the author can place this information in a separate style sheet

and then link or import that file.1 For example, in Figure 6.3 thesvg element specifies astyle

attribute with the multi-part string value:

fill: none; font-size: 15;
stroke: black; stroke-width: 1;
text-anchor: middle

As usual, each of the above five CSS declarations is a property–value pair. For example “font-size:

15” specifies that the property “font-size” should take on the value “15”. Because all of these style

properties are specified on thesvg root element, the styles they set are inherited by each child

element, unless they are overridden.

6.3 Adding constraints to Scalable Vector Graphics

$XWKRU

+LJK�OHYHO
LPDJH

GHVFULSWLRQ

31*�-3(*
5DVWHU�LPDJH

IRUPDW

'LVSOD\�RI
UDVWHUL]HG
LPDJH

8VHU

IL[�WKH�UHVROXWLRQ

([DFWO\�RQH
SUHVHQWDWLRQ
SRVVLEOH

Q
H
WZ

R
UN
�F
R
Q
Q
H
F
WL
R
Q

�R
IW
H
Q
�O
R
Z
�E
D
Q
G
Z
LG
WK
�

Figure 6.4: The conventional process of delivering a raster image across the network.

1Unfortunately, few SVG renderers currently support separating the style sheet from the SVG document—with some
implementations, only style properties set via thestyle attribute are honored.

137

$XWKRU

+LJK�OHYHO
LPDJH

GHVFULSWLRQ

Q
H
WZ

R
UN
�F
R
Q
Q
H
F
WL
R
Q

�R
IW
H
Q
�O
R
Z
�E
D
Q
G
Z
LG
WK
�

'LVSOD\�RI
UDVWHUL]HG
LPDJH

8VHU

69*
LPDJH
IRUPDW

69*
UHQGHUHU

S
UH
IH
UU
H
G

UH
V
R
OX
WL
R
Q

IL[�WKH�UHVROXWLRQ

Figure 6.5: The process of delivering a resolution-independent SVG image across the network.

As previously mentioned, a primary advantage of Scalable Vector Graphics is resolution inde-

pendence. The conventional means of delivering an image is to render the figure, then send the

figure across the network in a rasterized image format such as PNG or JPEG (Figure 6.4). The

resolution is fixed when that file is created, and the artifact the user receives is inflexible. The

adoption of the SVG image format permits a different delivery mechanism (Figure 6.5). The high-

level image description is stored in the SVG image format, preserving much of the semantic value

provided by the author. That SVG file is then sent across the network, where an SVG renderer on

the client side chooses the resolution and creates a rasterized display of that image specially-tuned

for the display device and the desired size.

The key observation concerning the evolution from raster images to SVG is that we are sending

a higher-level description across the network and moving some of the processing of the image from

the server side to the client side. Thus, the artifact sent across the Internet is more flexible—it can

be used as the source for generating a high-quality printout of the image, to create a low-resolution

thumbnail of the image, or even to “render” the image aurally using speech synthesis to describe the

diagram. The decision of how to present the image is made with input from the user, her browser,

and other client-side software. Style sheets provide yet another way to increase the flexibility of the

138

$XWKRU

Q
H
WZ

R
UN
�F
R
Q
Q
H
F
WL
R
Q

�R
IW
H
Q
�O
R
Z
�E
D
Q
G
Z
LG
WK
�

'LVSOD\�RI
UDVWHUL]HG
LPDJH

8VHU

&69*
LPDJH
IRUPDW

69*
UHQGHUHU

�
&DVVRZDU\

9
LH
Z
LQ
J

H
Q
Y
LU
R
Q
P
H
Q
W

OD\RXW�REMHFWV�
SLFN�IRQW�VL]H�

IL[�WKH�UHVROXWLRQ

�KLJKHU�OHYHO
GHVFULSWLRQ�

Figure 6.6: The process of delivering a CSVG image across the network.

image sent over the network: not only is the resolution left undetermined, but the final decision as

to, for example, the coloring scheme, can be delayed until after applying style sheet declarations.

My constraint extension to SVG permits describing the author’s layout intentions, and defers

the actual positioning and sizing of the image’s elements until just before final display for the user

(Figure 6.6). To support this greater flexibility, I have made three extensions to the SVG language.

First, I add a new element type calledconstraint and permit those elements to be children of

thesvg root element. Eachconstraint element has a required attribute,rule , and an optional

attribute,strength . Second, I support identifier names in place of literal numbers in all attribute

and style sheet values.

Thus, we can write:

<constraint rule="rect_w >= rect_h"
strength="strong"/>

<rect x="10" y="20"
width="rect_w" height="rect_h"/>

to express the desire that the rectangle be at least as wide as it is tall. The rule implicitly introduces

139

new constraint variables.2 Third, I add several built-in read-only constraint variables. (A read-

only variable is one that cannot be changed by the solver to satisfy the constraint in which it occurs

[14].) Two variables,viewport width andviewport height , are used to allow the image to be

influenced by the size of the display area. I exposecurrent time andcurrent time squared

which are both ever-increasing read-only variables that allow CSVG to support the declarative

specification of time-based animations more directly than theanimate elements.

CSVG permits image descriptions to be at a higher level of abstraction than an ordinary SVG

file. Instead of forcing the author to specify exact values for positions and sizes, the CSVG author

can use meaningful names for values and enumerate desired relationships among those values.

Similar to how SVG defers choosing the display resolution to later in the delivery pipeline, CSVG

delays finalizing thelayoutof the illustration until the client side (Table 6.1).

Table 6.1: Where properties of a graphic becomes fixed.

Image format Resolution Style Layout

PNG/JPEG server server server
SVG client server server
SVG + CSS client client server
CSVG + CSS client client client

6.3.1 A layout example

We can rewrite Figure 6.3 to specify constraints on the layout of the class hierarchy, rather than

giving exact locations for all the parts of the illustration. The CSVG description of the image looks

like the ordinary SVG image (Figure 6.2) under “ideal” viewing conditions. However, the CSVG

file is far more flexible, and it will appear as shown in Figures 6.7 and 6.8 when the viewport

dimensions are altered. An ordinary SVG file would always appear as just a uniformly scaled

version of Figure 6.2.

2My syntax was chosen for simplicity. It may be useful to require explicit introduction of variables and to use a
separate XML namespace for the extensions so that SVG renderers without a constraint engine could still handle
CSVG images.

140

Figure 6.7: CSVG rendering of theFormat class hierarchy inside a wide and short viewport.

For the CSVG version of the class hierarchy, I use a total of 77 constraints that reflect typical

layout desires for viewing trees: nodes at the same level are aligned horizontally (4), different

levels are spaced at equal vertical intervals (8), there is a minimum gap between adjacent nodes on

the same level (4), and parent nodes are above and midway between their edge children (5) [101,

p. 204]. Of the remaining 56 constraints, 32 are used to keep the text inside the viewport, 16 are

used to declare connection points for the lines, and the last 8 are for setting the margin parameters

and controlling the font size. An abridged version of the CSVG source is in Figure 6.10.

Of course, many of these constraints are redundant and could be eliminated through analysis.

Because the Cassowary algorithm handles cycles without difficulty, the redundancies are not a

problem, though they do impact performance. A CSVG image for frequent use would likely be

optimized before distribution.

6.3.2 An animation example

Constraints relating object positions to the current time can be used to support simple animations.

Constraints for layout are even more compelling when parts of the image are moving: the positions

of the remaining objects can be described at a high level, knowing that the solver will animate

whatever other objects need to move to maintain the specified constraints.

Figure 6.9 shows four screenshots of the CSVG prototype rendering an animation of a ball

falling on a seesaw. Theseesaw.csvg image contains 18 constraints to support the animation:

12 for the positions of the various elements, 1 relating the ball to thecurrent time squared

141

Figure 6.8: CSVG rendering of theFormat class hierarchy inside a narrow and tall viewport.

built-in variable, 1 stating that the ball must remain above the left edge of the seesaw, and 4

describing that the seesaw cannot go through the floor nor through the fulcrum.

6.4 Implementation

On the client side of the pipeline, I have implemented a CSVG viewer to experiment with the

additional expressiveness it provides. My prototype is based on version 0.71 of the CSIRO SVG

Viewer [120]. That SVG viewer is implemented in Java, and it uses IBM’s XML4J parser version

2.0.15 [83]. For parsing the constraint rule expressions, I use JLex [7], a lexical analyzer generator

(similar to Lex), and CUP (Constructor of Useful Parsers) [80], an LALR parser generator (similar

to YACC). For solving the constraint systems and laying out the figure, I embedded my Java

142

Figure 6.9: CSVG animation of a ball falling towards seesaw. The position of the ball is directly
related to time, and the seesaw moves because of constraints describing its behavior.

implementation of the Cassowary Constraint Solving Toolkit (Chapter 3).

As with any XML language, CSVG is defined by its Document Type Definition. The CSVG

DTD is a straightforward extension of the SVG DTD: I added theconstraint element and

specified its two attributes,rule (required) andstrength (implicit, defaulting tostrong):

<!ELEMENT constraint EMPTY >
<!ATTLIST constraint

rule CDATA #REQUIRED
strength CDATA #IMPLIED>

Additionally, I added theconstraint element to the list of permissible children ofsvg elements:

<!ELEMENT svg (defs?,desc?,title?, (path|text|...|constraint)*)>

No other changes to the SVG DTD were necessary to support using identifiers inside of at-

tribute expressions. (However, further changes would be necessary with the more sophisticated

data description that XML Schema allows.)

After the XML parser reads in the SVG document, constraint elements create new constrain-

able variables for each unique identifier contained in a constraint rule. For each variable, we add

a stay constraint on it to ensure stability of the resulting figure. Then, for each constraint element,

we create a constraint object by parsing the rule attribute’s string. Finally, we add each constraint

to the global solver.

As the internal representation of the image is built, we store the names of variable identifiers

that are used as an attribute’s value. Then, whenever we render the figure, we retrieve the values

143

<?xml version="1.0"?>
<!DOCTYPE svg SYSTEM "csvg.dtd">
<svg width="4.5in" height="4in" viewBox="0 0 100 100"

style="fill: none; stroke: black; stroke-width: 1">
<desc>The object hierarchy surrounding class "Java.text.Format"</desc>
<constraint rule="fh >= 9"/>
<constraint rule="vert_spacing = vp_height / 3.5"/>
<constraint rule="text_w * 4 = vp_width"/>
...
<!-- stay inside viewport -->
<constraint rule="o_x >= side_margin + h_text_w"/>
<constraint rule="o_x <= vp_width - side_margin - h_text_w"/>
<constraint rule="o_y >= top_margin + fh"/>
<constraint rule="o_y <= vp_height - top_margin"/>
...
<!-- layout between children and parents -->
<constraint rule="(dtf_x + nf_x) / 2 = f_x" strength="strong"/>
<constraint rule="f_y >= o_y + vert_spacing" strength="strong"/>
...
<!-- same level at same y coordinate -->
<constraint rule="dtf_y = mf_y"/>
...
<!-- same level spread out horizontally -->
<constraint rule="dtf_x + text_w <= mf_x"/>
...
<!-- the text elements for each class -->
<g style="font-size: fh; text-anchor: middle">

<text x="o_x" y="o_y">Object</text>
<text x="f_x" y="f_y">Format</text>
<text x="dtf_x" y="dtf_y">DateFormat</text>
<text x="mf_x" y="mf_y">MessageFormat</text>
<text x="nf_x" y="nf_y">NumberFormat</text>
...

</g>

<!-- lines connecting parents to children -->
<line x1="o_x" y1="o_y_b" x2="f_x" y2="f_y_t"/>
<line x1="f_x" y1="f_y_b" x2="dtf_x" y2="dtf_y_t"/>
...

</svg>

Figure 6.10: CSVG source of the object hierarchy surrounding theJava.text.Format class.
The< inside of rule attribute values is an XML entity that represents the “<” symbol.

144

of attributes as usual, with one extra step: if the attribute is an identifier, we then look up that

constraint variable’s value and use it. Forpath elements, we prefix names of constraint variables

with the$ symbol to avoid ambiguity. For example, we write:

<path d="M $x $y l $dx $dy"/>

to move to the absolute coordinates held inx andy , and then draw a line to the relative coordinates

contained in variablesdx anddy .

On a Xeon Pentium III 550 MHz test machine running Java 1.3beta-0 with the HotSpot virtual

machine under Windows NT 4.0, the performance of the prototype is very good. For the class

hierarchy example that contains 77 constraints, the adding of the constraints and the initial solve

requires only 360 ms. Subsequent re-solves of the constraint system after resizing the window

require less than 200 ms each. Thus, re-rendering the figure after changing the viewport size takes

only slightly longer than for the ordinary SVG viewer. Performance would be even better if I

removed redundant constraints or further optimized the implementation.

On the server side, the class hierarchy diagram example was largely mechanically-derived from

an XML-based representation of Java source code, JavaML [4]. Using XSLT [29], it is reasonably

straightforward to generate CSVG from the JavaML representation.

6.5 Related work

As mentioned earlier, style-sheet technologies, such as CSS (Cascading Style Sheets) [20], DSSSL

(Document Style Semantics and Specification Language) [86], PSL (Proteus Style Language) [98],

and XSL (eXtensible Style Language) [29], each delay finalizing various presentational attributes

of a figure until later in the delivery process, closer to the viewing user. None of these style

languages, however, attempt to preserve layout desires to perform layout dynamically on the client

side.

My CSVG motivation and philosophy is analogous to that of Constraint Cascading Style Sheets

(Chapter 5), and CCSS is directly applicable to controlling style properties of CSVG documents

as well. The primary addition of CSVG beyond CCSS is the ability to control non-style properties

of SVG elements. This feature is necessary to control layout because the positions of those objects

145

are determined not by style properties but by element attributes.

Kim Marriott (a co-author on papers describing the Cassowary and CCSS work) and his col-

leagues have independently done some preliminary work on constraint extensions to SVG. They

use MathML to describe constraints (instead of a string), use the QOCA algorithm which uses a

least-squares-better comparator but is otherwise similar to Cassowary, and support a limited form

of disjunctions modeled after the preconditions for CCSS [137]. Diehl and Keller describe con-

straint extensions to the Virtual Reality Markup Language (VRML) based on a local propagation

based solver that is unable to handle cycles or inequality constraints [39].

The animation aspects of SVG and CSVG are related to the Synchronized Multimedia Inte-

gration Langauge (SMIL) [78]. Another project called Madeus has used the Cassowary solver to

handle a wider range of constraints in multimedia documents [136]. Madeus provides support for

both temporal and spatial relationships, and it includes a rudimentary authoring environment.

6.6 Summary and future work

My constraint extension to SVG provides useful new expressiveness for describing illustration

graphics at a higher semantic level. CSVG permits deferring the actual layout of the objects in the

figure until the final rendering, thus resulting in greater flexibility in dealing with varied viewing

environments and user desires. The implementation of the prototype system was straightforward

because I was able to leverage the Cassowary constraint solving toolkit.

There are substantial opportunities for future improvements of CSVG. Currently, there are no

authoring environments that preserve the author’s intentions sufficiently well to generate CSVG at

the appropriate level of abstraction. It is essential that a drawing program permit users to spec-

ify constraints interactively, dynamically maintain them throughout editing, and ultimately reflect

those constraints in the saved CSVG file. Noth’s CDA [114] or an SVG-capable editor such as

Adobe Illustratortm or Sketch [75] may provide a useful starting point.

Even in the presence of graphical editing tools for CSVG, it may be beneficial to provide some

syntactic sugar for CSVG. Future versions of CSVG could support referencing other elements’

attributes directly. Additionally, CSVG could easily support using arbitrary expressions, instead of

just identifiers, for attribute values. Such expressions would provide non-linear and non-numeric

146

constraints over read-only variables. Extending the power of the constraint solving algorithms

would permit some of these kinds of constraints over read-write variables. For example, a text

element in a CSVG document could be constrained to display the coordinates of a circle: moving

the circle would update the string, and editing the string would move the circle.

It may also be useful to permit even higher-level constraint abstractions in the CSVG source.

For example:

<align dir="horizontal" anchor="middle">
<!-- arbitrary basic shape objects here -->

</align>

would permit easier specification of the intention that a set of basic shapes are aligned in a row by

their vertical centers. Constraints at this level also avoid problems that arise when object structure

changes. Suppose a basic shape is removed from a diagram (e.g., using the SVG DOM): should in-

direct relationships through that object remain or be removed? If only the primitive constraints are

present, the situation is ambiguous. With multiple objects being aligned with a single declaration,

the answer is more clearly that those objects should remain aligned.

Another area for future work is to better describe the semantics of the SVG in terms of con-

straints and constraint hierarchy theory. This direction is similar to what I did for Constraint

Cascading Style Sheets (Chapter 5) and it may provide a unifying implementation mechanism for

parts of SVG as well. In particular, some of the scripting events, such asonMouseMove, may

be handled within this framework: a discrete action (such as a button press) establishes a con-

nection that then is managed via a constraint relationship until a subsequent action removes the

constraint [87].

Overall, CSVG provides a surprising amount of expressiveness at a minimal implementation

complexity, and at a low performance cost.

147

Chapter 7

CONCLUSIONS AND FUTURE WORK

This dissertation describes a number of interactive graphical applications that benefit from con-

straints, and demonstrates the practical applicability of sophisticated constraint solving techniques

using the Cassowary constraint solving toolkit.

7.1 Summary

Constraints provide a means of separating thewhatof desired relationships from thehowof main-

taining those relationships. Over the years, constraints have been used with varying levels of suc-

cess by numerous interactive graphical systems. A primary issue is managing the tradeoff between

expressiveness and performance (Chapter 2).

The Cassowary linear arithmetic constraint solving algorithm provides a useful balance be-

tween the expressiveness it allows and the performance in finding solutions. My research intro-

duces the Cassowary constraint solving toolkit, which demonstrates that an efficient, modular,

reusable constraint-solving black-box software-component is possible. The toolkit was embed-

ded in various interactive graphical applications that benefited from the constraint capabilities the

toolkit provides (Chapter 3).

SCWM provides a demonstration that exposing end-users to the power of constraint solving is a

realistic possibility. That system also gives a rich framework for further investigations of window

layout policies, constraint-interaction paradigms, and programming by demonstration systems.

Because SCWM has been developed in the Open Source community with constant feedback from

real-world users, it is an excellent opportunity to expose more people to the world of declarative

programming and its benefits (Chapter 4).

Constraints also have proven useful for formalizing some of the complicated procedural se-

mantics of standards such as Cascading Style Sheets (CSS). Moreover, they can provide a unifying

148

implementation mechanism for otherwise ad-hoc capabilities desired for page layout: instead of

providing numerous specific features, we can instead provide a general technique that encompasses

those techniques with fewer special cases and greater applicability (Chapter 5).

The constraint extension to SVG, CSVG, is especially notable for demonstrating how straight-

forward it is to augment an existing system with constraint capabilities. The engineering effort

required to use the toolkit is small, and the addition of constraints permits varying the layout in

more complex ways than simple scaling. Additionally, by exposing the read-onlycurrent-time

variable, we can use CSVG to achieve simple animations, specified declaratively (Chapter 6).

In recent years, there has been a strong movement in the World Wide Web and documents

communities for the separation of presentation details from content in pages delivered across the

Internet. This separation is a move towards higher-level abstractions in the long-term storage for-

mat of data, and enables multiple presentations of the same core data. Constraints for layout can

be usefully viewed in this framework: augmenting documents and images with information about

the author’s intentions for relationships among the included entities permits greater flexibility in

the ultimate presentation. In addition, it adds value to the source format, and enables more se-

mantically meaningful processing that can be especially important when the presentation medium

differs dramatically from what the designer expects (e.g., aural instead of visual).

7.2 Limitations of Cassowary

The Cassowary algorithm suffers from three primary limitations. First, it can manage only linear

constraints. Second, it cannot handle disjunctions of constraints. Third, its domain is limited to

only real-valued variables.

The limitation to only linear constraints has proven somewhat restricting. In particular, Eu-

clidean distance is non-linear, and is thus beyond the expressive power of Cassowary. For drawing

programs, especially, this shortcoming is significant. For example, it disallows requiring that two

line segments remain the same length, or ensuring that two objects are equidistant from a third.

Fortunately, for aligned layouts, as is more common in publishing and diagrammatic applica-

tions, rectilinear (i.e., Manhattan) distances may suffice. Nevertheless, circumventing the linearity

requirement for at least the special case of distance would definitely provide a useful boost in

149

expressiveness.

The inability to handle disjunctions has also caused difficulties. Disjunctions arise frequently in

authors’ intentions for layout. For example, I may wish for a figure to be either to the left or to the

right of the text. Similarly, I may wish for two windows to be non-overlapping. In the general case,

it is NP-complete to handle arbitrary disjunctions. For the applications described here, domain-

specific techniques were used to support the disjunction capabilities that were especially useful.

For example, for CCSS, I added preconditions on style sheets, and the ability to do a linear search

on a list of style sheets for the first one that had its preconditions met. Permitting some more

general handling of disjunctions would be useful, and could reduce the need to address disjunctions

on a per-application basis.

The limitation that Cassowary deals only with relationships among real-valued variables was

the least troublesome for the applications discussed. In part, this was because my research focuses

on layout applications where numerical constraints were most helpful. Nevertheless, there are

certainly benefits to creating a constraint toolkit that is able to handle arbitrary domains. Enabling

constraints over strings, enumerations, and more, would permit more of the system to be described

declaratively. Ultimately, such an extension could even further simplify the implementation of an

application by increasing the scope of the constraint solver’s responsibilities.

7.3 Limitations of the applications

The biggest shortcoming of the SCWM work is that I have not done a study to better understand

how real users actually use the constraint features in their daily work. In part, this is the result

of an engineering decision to permit the window manager to be compiled either with or without

constraint support. Although that decision has increased the total number of users, the additional

complexity of building the software to support constraints has left some users willing to settle for

using SCWM simply as a highly configurable and programmable system. Thus, there were fewer

users of the constraint features than otherwise might have been possible.

Constraint Cascading Style sheets is compelling especially because it provides a framework for

understanding CSS. However, the usefulness of the added expressiveness is somewhat uncertain.

Over the years, countless many procedural hacks and special-purpose features have been built into

150

the most popular web browsers to support the kinds of layout features that designers and users have

desired. Because those capabilities already exist, there is less motivation to provide the constraint

framework, despite its generality, and even though CCSS would be a significant simplification and

improvement.

Constraint Scalable Vector Graphics suffers from a similar problem, but also has an additional

limitation of too few inputs to the constraint system that affect the final rendering. Constraints

provide the most value in the face of uncertainty in the final presentation environment. CSVG in

its simple form only has two inputs available to alter the layout of the graphic: the viewport width

and the viewport height. Once SVG renderers support the SVG DOM and the various interactive

capabilities of the format, CSVG will become far more compelling as designers will be able to

describe declaratively how the diagram should respond to those interactions, much like SCWM and

users interacting with windows.

7.4 Research in the open source community

One unusual aspect of this research is that parts of it were executed in full view of the open source

software community. The Cassowary toolkit, along with SCWM and the prototype implementations

for CCSS and CSVG, are freely available. In particular, SCWM, from its inception was developed

as a free software project. The latest and greatest “developer” version of the source code was

always easily available online, and periodic stable releases were made throughout the development

process.

Choosing to develop SCWM in full public view involved numerous tradeoffs. It was incredibly

advantageous to have real users testing the code regularly. As the user base of SCWM grew, having

dedicated users was also a useful motivator. Because SCWM was publicly recognizable, obtaining

expert feedback and advice (e.g., on X/11 system intricacies) was perhaps easier. Comments

and code patches received from users were invaluable in advancing the functionality of SCWM.

Making the window manager available continually required greater engineering discipline and

was more time consuming, but it resulted in a more robust platform. Oftentimes users desired

features that were not directly relevant to the research goals of the project. When possible, users

were encouraged to become developers by contributing changes to support those features, but I

151

also often addressed the requests personally.

7.5 Compatibility of constraint extensions

Backward compatibility issues also present a significant design tradeoff. For SCWM, I chose a

design that permits the window manager to be built without the constraint features included. This

decision enabled many more users to use the constraint-disabled version of SCWM, as it was easier

to build (it does not require a C++ compiler) and has lower resource requirements so it can be run

on lower-end hardware. That choice also enabled a cleaner separation of the constraint function-

ality from the rest of the window manager. For example, as described in Section 4.3.4, instead

of changing each window to directly use constrainable variables to determine its configuration,

the constrainable variables actually shadow the ordinary primitive integer variables that are used

internally. This architecture permits better control of when the windows react to new solutions to

the constraints. From an engineering perspective, separating the constraint functionality from the

core window manager was useful.

However, a significant problem with permitting SCWM to function without the constraint solver

is that it complicates replacing procedural features with constraint-based versions. For example,

SCWM still uses ordinary procedural code for direct-manipulation moving and resizing of win-

dows. It would be better from a research perspective to replace that procedural functionality with

constraints relating the user’s pointer position and the window configuration. As with the CCSS

work, this would let us eliminate substantial chunks of procedural code by instead leveraging the

constraint solver’s capabilities. As other highly programmable window managers such as Saw-

fish [69] gain popularity, it may be beneficial to revisit this design decision as SCWM grows into

its unique niche as being the only constraint-enabled window manager for X/11.

7.6 Evolution of the toolkit

Having multiple different target applications has been useful in growing the Cassowary toolkit to

meet the demands of real-world applications. Over the last three years, over a dozen versions of the

toolkit have been released. Some of those releases simply fix bugs (often ones reported by users

152

from the free software community). Others, though, add numerous new features to the toolkit to

better support client applications.

For example, early versions of the Cassowary toolkit only permitted one set of edit constraints

to be active at a time. After callingbeginEdit, another invocation ofbeginEdit was disallowed.

This restriction is unnecessary from the perspective of the solving algorithm, and the situation was

encountered in SCWM when moving a window off the edge of the screen. During the interactive

movement of the window, the window’s position is a two-variable edit constraint, and when the

edge of the screen is encountered, the viewport offset needs to be changed. This scenario requires

a nested edit constraint. The change to the implementation to support such nesting was straight-

forward, but it was the experience of writing a sophisticated client of the library that brought this

detail to my attention.

The CCSS project resulted in another feature enhancement for the toolkit. In CCSS, numerous

constraints are added simultaneously as the style sheet rules are applied to the document tree. Cas-

sowary originally would always optimize the tableau after each constraint addition. This approach

is inefficient if we do not care about intermediate solutions and are only interested in the solution

after all constraints have been added. Thus, I added thesetAutoSolve function and the ability

to short-circuit out of the optimization phase when adding constraints. This capability improves

performance at minimal extra complexity, and it has also proven useful in the CSVG work.

7.7 Future work

In addition to overcoming the limitations described in the preceding section, there are numerous

fruitful areas for future work enabled by the research described here.

SCWM provides a powerful and general infrastructure for all kinds of application and window

management extensions. SCWM’s ability to intercept keystrokes, simulate keystrokes, and observe

the user’s interactions with all of her application windows lets it be a useful, pro-active user agent.

Features that span multiple applications can be developed for SCWM to help the user manage her

conceptual tasks more directly (rather than dealing with each application in isolation).

SCWM’s voice recognition support is currently only a proof of concept. That support opens up a

world of possibilities for experimenting with multi-modal input techniques. In particular, it seems

153

natural to express constraints verbally, and some combination of that with direct manipulation

may prove especially worthwhile, particularly for disabled users for whom direct manipulation is

difficult or impossible.

For Constraint Cascading Style Sheets, providing a first-class implementation inside of a pop-

ular web browser could increase acceptance of constraints and greatly simplify parts of the im-

plementation. At the time the research was done, the Mozilla open-source browser was far too

unstable to use as a starting point. Now, two years later, Mozilla is finally stable enough that it

may warrant a re-implementation of CCSS to further demonstrate the practical applicability of

these techniques.

Constraint Scalable Vector Graphics, too, will likely be worth re-implementing once an SVG

renderer supports all of the advanced interaction and animation capabilities. Additionally, demon-

strating how the existing complex features can be viewed as special cases of the general constraints

framework (as was done with CCSS) would be of some value, and could similarly suggest worth-

while simplifications to the underlying implementation.

Finally, because of the power of abstraction and code reuse, extending the Cassowary constraint

solving toolkit is an important goal that will benefit all of these constraint-enabled applications, and

many more to come. Handling some important non-linear constraints (e.g., distance, parallelism),

limited forms of disjunctions, and supporting integration with local-propagation based sub-solvers

for non-numeric constraints would each be valuable extensions to the toolkit.

7.8 Conclusion

The benefits from the constraint features varied in usefulness. For existing systems that provide ad

hoc support for a few especially-important constraint-like features, the general constraint mecha-

nism is not likely to provide substantial commercial benefit in the short term. In the longer term,

the value of constraints will be much greater when they are integrated with the design from the

start. The existence of the Cassowary toolkit makes that a realistic possibility for future interactive

graphical applications.

154

BIBLIOGRAPHY

[1] Adobe Systems Incorporated.PostScript Language Reference Manual. Addison-Wesley,
Reading, Massachusetts, 2nd edition, 1990.

[2] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie,
R. Sutor, C. Wilson, and L. Wood. Document object model (DOM) level 1. W3C Recom-
mendation, October 1998.http://www.w3.org/TR/REC-DOM-Level-1 .

[3] Greg J. Badros. Cassowary constraint solving toolkit. Web page, 1998–2000.http:
//www.cs.washington.edu/research/constraints/cassowary/ .

[4] Greg J. Badros. JavaML: A markup language for java source code. InProceedings of the
Ninth International Conference on the World Wide Web, Amsterdam, The Netherlands, May
2000. Elsevier Science B. V.http://www.cs.washington.edu/homes/gjb/
JavaML .

[5] Greg J. Badros, Jeffrey Nichols, and Alan Borning. SCWM—an intelligent constraint-
enabled window manager. InProceedings of the AAAI Spring Symposium on Smart Graph-
ics, March 2000.

[6] Greg J. Badros and Maciej Stachowiak. Scwm—The Scheme Constraints Window Man-
ager. Web page, 1997-2000.http://scwm.mit.edu/scwm/ .

[7] Elliott Berk and C. Scott Ananian. Jlex: A lexical analyzer generator for java. Web Page,
2000.http://www.cs.princeton.edu/˜appel/modern/java/JLex/ .

[8] Sanjay Bhansali, Glenn A. Kramer, and Tim J. Hoar. A principled approach toward symbolic
geometric constraint satisfaction.Journal of Artificial Intelligence Research, 4:419–443,
1996.

[9] Eric. A. Bier and Maureen C. Stone. Snap-dragging. InProceedings of SIGGRAPH 1986,
Dallas, August 1986.

[10] Alan Borning.ThingLab—A Constraint-Oriented Simulation Laboratory. PhD thesis, Stan-
ford University, March 1979. A revised version is published as Xerox Palo Alto Research
Center Report SSL-79-3 (July 1979).

[11] Alan Borning, Richard Anderson, and Bjorn Freeman-Benson. Indigo: A local propagation
algorithm for inequality constraints. InProceedings of the 1996 ACM Symposium on User
Interface Software and Technology, pages 129–136, Seattle, November 1996.

155

[12] Alan Borning and Robert Duisberg. Constraint-based tools for building user interfaces.
ACM Transactions on Graphics, 5(4):345–374, October 1986.

[13] Alan Borning and Bjorn Freeman-Benson. Ultraviolet: A constraint satisfaction algorithm
for interactive graphics.Constraints: An International Jounal, 3:1–26, 1998.

[14] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hi-
erarchies. Lisp and Symbolic Computation, 5(3):223–270, September 1992.
http://www.cs.washington.edu/research/constraints/theory/
hierarchies-92.html .

[15] Alan Borning, Richard Lin, and Kim Marriott. Constraints for the web. InProceedings of
1997 ACM Multimedia Conference, pages 173–182, 1997.

[16] Alan Borning, Richard Lin, and Kim Marriott. Constraints for the web. InProceedings of
ACM Multimedia 1997, November 1997.

[17] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Constraint hierarchies
and logic programming. InProceedings of the Sixth International Conference on Logic
Programming, pages 149–164, Lisbon, June 1989.

[18] Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. Solving linear arithmetic con-
straints for user interface applications. InProceedings of the 1997 ACM Symposium on
User Interface Software and Technology, October 1997.

[19] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs. Cascading style sheets, level 2.
W3C Working Draft, January 1998.http://www.w3.org/TR/WD-css2/ .

[20] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs. Cascading style sheets, level 2.
W3C Working Draft, January 1998. http://www.w3.org/TR/WD-css2/.

[21] Bert Bos, Dave Raggett, and H˚akon Lie. Frame-based layout via style sheets. W3C Working
Draft. http://www.w3.org/TR/WD-layout.

[22] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible markup language (XML)
1.0. W3C Recommendation, February 1998.http://www.w3.org/TR/REC-xml .

[23] Arun N. Brotman, Lynne Shapiro ann Netravali. Motion interpolation by optimal control.
In Proceedings of SIGGRAPH 1988, pages 309–315, Atlanta, Georgia, August 1988.

[24] Mark W. Brunkhart. Interactive geometric constraint systems. Master’s thesis, University
of California, Berkeley, Berkeley, California, May 1994.

156

[25] Richard L. Burden and J. Douglas Faires.Numerical Analysis. PWS Publishing Company,
Boston, Massachusetts, fifth edition, 1985.

[26] Bay-Wei Chang and David Ungar. Animation: From cartoons to the user interface. InPro-
ceedings of the 1993 ACM Conference on User Interface Software and Technology, pages
45–55, Atlanta, Georgia, November 1993. User Interface Software and Technology.

[27] Sitt Sen Chok and Kim Marriott. Automatic construction of user interfaces from constraint
multiset grammars. InProceedings of IEEE International Symposium on Visual Languages,
pages 242–249, Los Alamitos, California, September 1995.

[28] Sitt Senn Chok and Kim Marriott. Automatic construction of intelligent diagram editors. In
Proceedings of UIST 1998, San Francisco, California, November 1998.

[29] James Clark. XSL transformations. W3C Recommendation, November 1999.http:
//www.w3.org/TR/xslt .

[30] William Clinger and Jonathan Rees.Revised 4 Report on the Algorithmic Language Scheme,
November 1991.

[31] Ellis S. Cohen, Edward T. Smith, and Lee A. Iverson. Constraint-based tiled windows.
IEEE Computer Graphics and Applications, pages 35–45, May 1986.

[32] W3 Consortium. Amaya web browser software. Web page, October 1998. http://www.w3.
org/Amaya.

[33] W3 Consortium. HTML 4.0 specification. Technical report, W3 Consortium, 1998. http://
www.w3.org/TR/REC-html40.

[34] Isabel F. Cruz. Expressing constraints for data display specification: A visual approach.
In Principles and Practice of Constraint Programming, chapter 23, pages 445–469. MIT
Press, Cambridge, Massachusetts, 1995.

[35] Ron Davidson and David Harel. Drawing graphs nicely using simulated annealing.ACM
Transactions on Graphics, 15(4), 1996.

[36] Ed Dengler, Mark Friedell, and Joe Marks. Constraint-driven diagram layout. InProceed-
ings of the 1993 IEEE Symposium on Visual Languges, pages 330–335, Bergen, Norway,
August 1993.

[37] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Algorithms
for drawing graphcs: An annotated bibliography.Computational Geometry: Theory and
Applications, 4:235–282, 1994.

157

[38] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs, New
Jersey, 1999.

[39] Stephan Diehl and J¨org Keller. VRML with constraints. InProceedings of the Web3D-
VRML 2000 fifth symposium on Virtual reality modeling language, Monterey, California,
February 2000.http://www.cs.uni-sb.de/RW/users/diehl/VRMLCONSTR/
VRMLConstr.html .

[40] Robert Adámy Duisberg. Animation using temporal constraints: An overview of the Ani-
mus system.Human-Computer Interaction, 3:275–307, 1987-1988.

[41] ECMAScript language specification, 3rd ed., December 1999.ftp://ftp.ecma.ch/
ecma-st/Ecma-262.pdf .

[42] Elk—the extension language kit. Web page, 1999.http://www-rn.informatik.
uni-bremen.de/software/elk .

[43] Danny Epstein and Wilf LaLonde. A Smalltalk window system based on constraints. In
Proceedings of the 1988 ACM Conference on Object-Oriented Programming Systems, Lan-
guages and Applications, pages 83–94, San Diego, September 1988. ACM.

[44] Jon Ferraiolo. Scalable vector graphics (SVG) 1.0 specification. W3C Working Draft,
December 1999.http://www.w3.org/TR/1999/WD-SVG-19991203/ .

[45] Roger Fletcher.Practical Methods of Optimization. John Wiley and Sons, New York, 1987.

[46] Barry Fowler and Richard Bartels. Constraint-based curve manipulation.IEEE Computer
Graphics and Applications, pages 43–49, September 1993.

[47] Bjorn Freeman-Benson. Converting an existing user interface to use constraints. InPro-
ceedings of the ACM SIGGRAPH Symposium on User Interface Software and Technology,
pages 207–215, Atlanta, Georgia, November 1993.

[48] Bjorn Freeman-Benson, Molly Wilson, and Alan Borning. DeltaStar: A general algorithm
for incremental satisfaction of constraint hierarchies. InEleventh Annual International
Phoenix Conference on Computers and Communications, pages 561–568, Phoenix, Ari-
zona, April 1992.

[49] Bjorn N. Freeman-Benson, John Maloney, and Alan Borning. An incremental constraint
solver.Communications of the ACM, 33(1):54–63, January 1990.

[50] Scott Furman and Scott Isaacs. Positioning HTML elements with cascading style sheets.
W3C Working Draft. http://www.w3.org/TR/WD-positioning.

158

[51] fvwm—the f? virtual window manager. Web page, 1999.http://www.fvwm.org .

[52] Gimp—GNU image manipulation program. Web page, 1999.http://www.gimp.org .

[53] Michael Gleicher. Integrating constraints and direct manipulation. InProceeding 1992
Symposium on Interactive 3D, pages 171–174, 1992.

[54] Michael Gleicher. A graphics toolkit based on differential constraints. InProceedings of
UIST 1993, pages 109–120, Atlanta, Georgia, November 1993.

[55] Michael Gleicher. Practical issues in graphical constraints. InPrinciples and Practice
of Constraint Programming, chapter 21, pages 407–426. MIT Press, Cambridge, Mas-
sachusetts, 1995.

[56] Michael Gleicher and Peter Litwinowicz. Constraint-based motion adaptation. Technical
Report TR 96-153, Apple Computer, June 1996.

[57] Michael Gleicher and Andrew Witkin. Through-the-lens camera control. InProceedings of
SIGGRAPH 1992, July 1992.

[58] Michael Gleicher and Andrew Witkin. Supporting numerical computations in interactive
contexts. InGraphics Interface 1993, 1993.

[59] Michael Gleicher and Andrew Witkin. Drawing with constraints.Visual Computer,
11(1):39–51, 1994.

[60] Charles F. Goldfarb and Paul Prescod.The XML Handbook. Prentice Hall PTR, 1998.

[61] Michael Goosens and Sebastian Rahtz.The LATEX Web Companion. Addison Wesley Long-
man, 1999.

[62] James Gosling.Algebraic Constraints. PhD thesis, Carnegie Mellon University, Pittsburgh,
Pennsylvania, May 1983.

[63] James Gosling. SunDew – a distributed and extensible window system. InMethodology
of Window Management, chapter 5, pages 47–57. Springer Verlag, Heidelberg, Germany,
1986.

[64] James Gosling and David Rosenthal. A window manager for bitmapped displays and unix.
In Methodology of Window Management, chapter 13, pages 115–128. Springer Verlag, Hei-
delberg, Germany, 1986.

159

[65] P. Griebel, G. Lehrenfeld, W. Mueller, C. Tahedl, and H. Uhr. Integrating a constraint
solver into a real-time animation environment. Proceedings of IEEE Symposium on Visual
Languages, September 1996.

[66] GTk+—the GIMP toolkit. Web page, 1999.http://www.gtk.org .

[67] Guile. Web page, 1999.http://www.gnu.org/software/guile/guile.html .

[68] Carsten Haitzler. Enlightenment. Web page, 1999.http://www.enlightenment.
org .

[69] John Harper. Sawfish. Web page, 1999–2000.http://sawmill.sourceforge.
net/ .

[70] Warwick Harvey, Peter Stuckey, and Alan Borning. Compiling constraint solving using
projection. InProceedings of the 1997 Conference on Principles and Practice of Constraint
Programming (CP97), pages 491–505, October 1997.

[71] Weiqing He and Kim Marriott. Constrainted graph layout. In S. North, editor,Proceedings
of 1996 Graph Drawing Conference, pages 217–232, Berkeley, California, September 1996.
Springer Verlag.

[72] Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides.An Object-Oriented Ar-
chitecture for Constraint-Based Graphical Editing, chapter 14, pages 217–238. Springer,
1995.

[73] Tyson R. Henry.Interactive Graph Layout: The Exploration of Large Graphs. PhD thesis,
University of Arizona, Tucson, Arizona, June 1992. Also TR-92-03.

[74] Tyson R. Henry and Scott E. Hudson. Interactive graph layout. InProceedings of UIST
1991, pages 55–64, November 1991.

[75] Bernhard Herzon. Sketch, a vector drawing program for unix. Web page, 2000.http:
//sketch.sourceforge.net/ .

[76] Allan Heydon and Greg Nelson. The Juno-2 constraint-based drawing editor. Technical
Report 131a, Digital Systems Research Center, Palo Alto, California, December 1994.

[77] Arnaud Le Hors, Mike Champion, Steve Byrne, Gavin Nicol, and Lauren Wood. Document
object model core. W3C Working Draft, September 1999.http://www.w3.org/TR/
1999/WD-DOM-Level-2-19990923/core.html .

[78] Philipp Hoschka. Synchronized multimedia integration language. W3C Recommendation,
June 1998.http://www.w3.org/TR/REC-smil/ .

160

[79] Hiroshi Hosobe, Ken Miyashita, Shin Takahashi, Satoshi Matsuoka, and Akinori Yonezawa.
Locally simultaneous constraint satisfaction. In Alan Borning, editor,Principles and Prac-
tice of Constraint Programming 1994, pages 51–62, Orcas Island, Washington, 1994.

[80] Scott Hudson and C. Scott Ananian. CUP parser generator for Java. Web page, 1999–2000.
http://www.cs.princeton.edu/˜appel/modern/java/CUP/ .

[81] Scott E. Hudson and Shamim P. Mohamed. Interactive specification of flexible user interface
displays.ACM Transactions on Information Systems, 8(3):269–288, July 1990.

[82] Scott E. Hudson and John T. Stasko. Animation support in a user interface toolkit: Flexi-
ble robust and reusable abstractions. InProceedings of UIST 1993, pages 57–67, Atlanta,
Georgia, November 1993.

[83] IBM AlphaWorks. XML for Java. http://www.alphaworks.ibm.com/tech/
xml4j .

[84] Takeo Igarashi, Satoshi Matsuoka, Sachiko Kawachiya, and Hidehiko Tanaka. Interactive
beautification: A technique for rapid geometric design. InProceedings of UIST 1997, pages
105–114, Banff, Alberta, Canada, October 1997.

[85] ISO. Standard generalized markup language (SGML). ISO 8879, 1986.http://www.
iso.ch/cate/d16387.html .

[86] ISO/IEC. Document style semantics and specification language (DSSSL). ISO/IEC 10179,
1996.

[87] Robert J. K. Jacob, Leonida Deligiannidis, and Stephen Morrison. A software
model and specification language for non-wimp user interfaces.ACM Transactions on
Computer-Human Interaction, 6(1):1–46, March 1999.http://www.acm.org/pubs/
articles/journals/tochi/1999-6-1/p1-jacob/p1-jacob.pdf .

[88] Tomihisa Kamada and Satoru Kawai. A general framework for visualizing abstract objects
and relations.ACM Transactions on Graphics, 10(1):1–39, January 1991.

[89] Corey Kosak, Joe Marks, and Stuart Shieber. Automating the layout of network diagrams
with specified visual organization.IEEE Transactions on Systems, Man, and Cybernetics,
24(3):440–454, March 1994.

[90] Glenn A. Kramer. A geometric constraint engine.Artificial Intelligence, 58(1–3):327–360,
December 1992.

[91] David Kurlander and Steven Feiner. Inferring constraints from multiple snapshots. Techni-
cal Report CUCS-008-91, Columbia University, New York, May 1991.

161

[92] David Kurlander and Steven Feiner. Interactive constraint-based search and replace. InCHI
1992 Proceedings, May 1992.

[93] David Joshua Kurlander.Graphical Editing by Example. PhD thesis, Columbia Uni-
versity, July 1993. http://www.research.microsoft.com/˜djk/chimera/
chimera.htm .

[94] Richard Lin, Kim Marriott, and Peter J. Stuckey. Flexible font-size specification in Web
documents. InProceedings of the 22 Australasian Computer Science Conference, Auckland,
New Zealand, January 1999. Springer-Verlag.

[95] Mark Lutz. Programming Python. O’Reilly & Associates, Inc., Sebastopol, California,
1996.

[96] Blair MacIntyre. A constraint-based approach to dynamic colour management for window-
ing interfaces. Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada, 1991.

[97] Mark S. Manasse and Greg Nelson.Trestle Reference Manual. Digital Systems Re-
search Center, December 1991.http://gatekeeper.dec.com/pub/DEC/SRC/
research-reports/abstracts/src-rr-068.html .

[98] Philip M. Marden, Jr. and Ethan V. Munson. PSL: An alternate approach to style sheet
languages for the world wide web.Journal of Universal Computer Science, 4(10), 1998.
http://www.cs.uwm.edu/˜ multimedia.

[99] Kim Marriott. Constraint multiset grammars. InProceedings of IEEE Symposium on Visual
Language, pages 118–125, Los Alamitos, California, October 1994.

[100] Kim Marriott, Sitt Sen Chok, and Alan Finlay. A tableau based constraint solving toolkit for
interactive graphical applications. InInternational Conference on Principles and Practice
of Constraint Programming, 1998.

[101] Kim Marriott and Peter J. Stuckey.Programming with Constraints: An Introduction. MIT
Press, Cambridge, Massachusetts, 1998.

[102] Rich McDaniel and Brad A. Myers. Amulet’s dynamic and flexible prototype-instance
object and constraint system in C++. Technical Report CMU-CS-95-176, Carnegie Mellon
University, Pittsburgh, Pennsylvania, July 1995.

[103] Nenad Medvidovic and Richard N. Taylor. Reuse of off-the-shelf constraint solvers in C2-
style architectures. Technical Report UCI-ICS-96-28, University of California, Irvine, July
1996. ftp://www.ics.uci.edu/pub/arch/papers/TR-UCI-ICS-96-28.
fm.ps .

162

[104] Brad Myers. Issues in window management design and implementation. InMethodology
of Window Management, chapter 6, pages 59–71. Springer Verlag, Heidelberg, Germany,
1986.

[105] Brad Myers, Robert Miller, Rich McDaniel, and Alan Ferrency. Easily adding animations to
interfaces using constraints. InProceedings of UIST 1996, pages 119–128, Seattle, Wash-
ington, November 1996.

[106] Brad A. Myers. The user interface for Sapphire.IEEE Computer Graphics and Applications,
4(12):13–23, December 1984.

[107] Brad A. Myers. A taxonomy of user interfaces for window managers.IEEE Computer
Graphics and Applications, 8(5):65–84, September 1988.

[108] Brad A. Myers, Dario Giuse, Roger B. Dannenberg, Brad Vander Zanden, David S. Kosbie,
Philippe Marchal, Ed Pervin, Andrew Mickish, and John A. Kolojejchick. The Garnet
toolkit reference manuals: Support for highly-interactive graphical user interfaces in Lisp.
Technical Report CMU-CS-90-117, Computer Science Dept, Carnegie Mellon University,
March 1990.

[109] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden, David S.
Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal. Garnet: Comprehensive
support for graphical highly interactive user interfaces.IEEE Computer, November 1990.

[110] Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S. Ferrency, Andrew Faulring,
Bruce D. Kyle, Andrew Mickish, Alex Klimovitski, and Patrick Doane. The Amulet envi-
ronment: New models for effective user interface software development.IEEE Transactions
on Software Engineering, 23(6):347–365, June 1997.

[111] Colas Nahaboo. GWM—the generic window manager. Web page, 1995.http://www.
inria.fr/koala/gwm .

[112] Greg Nelson. Juno, a constraint-based graphics system. InProceedings of SIGGRAPH
1985, San Francisco, July 1985.

[113] Jakob Nielson.Usability Engineering. Morgan Kaufmann, 1994.

[114] Michael Noth. Constraint drawing applet. Web page, 1998. http://www.cs.washington.edu/
research/constraints/cda/info.html.

[115] Adrian Nye.Xlib Programming Manual. O’Reilly & Associates, Inc., Sebastopol, Califor-
nia, 1992.

163

[116] Gregory M. Oster and Anthony J. Kusalik. ICOLA—incremental constraint-based graphics
for visualization.Constraints: An International Jounal, 3:32–59, 1998.

[117] John K. Ousterhout.Tcl and the Tk Toolkit. Addison-Wesley, Reading, Massachusetts,
1994.

[118] John K. Ousterhout. Scripting: Higher level programming for the 21st century.IEEE
Computer, March 1998.

[119] T. Pavlidis and Christopher J. Van Wyk. An automatic beautifier for drawings and illustra-
tions. InProceedings of SIGGRAPH 1985, July 1985.

[120] Bella Robinson and Dean Jackson. SVG toolkit. Web page, 1999–2000.http://sis.
cmis.csiro.au/svg/ .

[121] David Rosenthal.Inter-client Communications Convention Manual, version 2.0 edition,
1994.http://www.talisman.org/icccm .

[122] Kathy Ryall, Joe Marks, and Stuart Shieber. An interactive constraint-based system for
drawing graphs. InProceedings of UIST 1997, Banff, Alberta Canada, October 1997.

[123] Peter H. Salus, editor.Functional and Logic Programming Languages, volume 4 ofHand-
book of Programming Languages, chapter 4. MacMillan Technical Publishin, Indianapolis,
Indiana, 1998.

[124] Michael Sannella. Analyzing and debugging hierarchies of multi-way local propagation
constraints. In Alan Borning, editor,Principles and Practice of Constraint Programming
1994, pages 63–77, Orcas Island, Washington, 1994.

[125] Michael Sannella.Constraint Satisfaction and Debugging for Interactive User Interfaces.
PhD thesis, Department of Computer Science and Engineering, University of Washington,
1994.

[126] Michael Sannella. The SkyBlue constraint solver and its applications. InProceedings of
the 1994 Workshop on Principles and Practice of Constraint Programming, Cambridge,
Massachusetts, 1994. MIT Press.

[127] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi-way
versus one-way constraints in user interfaces: Experience with the DeltaBlue algorithm.
Software—Practice and Experience, 23(5):529–566, May 1993.

[128] Michael Sannella, John Maloney, Bjorne Freeman-Benson, and Alan Borning. Multi-way
versus one-way constraints in user interfaces: Experience with the deltablue algorithm.
Software—Practice and Experience, 23(5):529–566, May 1993.

164

[129] Ben Schneiderman. Direct manipulation: A step beyond programming languages.IEEE
Computer, 16(8):57–69, August 1983.

[130] Ken Shoemake. Animating rotation with quaternion curves. InProceedings of SIGGRAPH
1985, pages 245–254, San Francisco, California, July 1985.

[131] SIOD—scheme in one defun. Web page, 1999.http://people.delphi.com/gjc/
siod.html .

[132] Richard M. Stallman. EMACS: The extensible, customizable display editor. Technical Re-
port 519a, Massachusetts Institute of Technology Artificial Intelligence Laboratory, March
1981.http://www.gnu.org/software/emacs/emacs-paper.html .

[133] Gerald J. Sussman and Guy L. Steele Jr. CONSTRAINTS—a language for expressing
almost-hierarchical descriptions.Artificial Intelligence, 14(1):1–39, August 1980.

[134] Ivan Sutherland.Sketchpad: A Man-Machine Graphical Communication System. PhD
thesis, Department of Electrical Engineering, MIT, January 1963.

[135] Shin Takahashi, Satoshi Matsuoka, Ken Miyashita, Hiroshi Hosobe, and Tomihisa Kamada.
A constraint based approach for visualization and animation.Constraints: An International
Jounal, 3:61–86, 1998.

[136] Laurent Tardif, Fr´edéric Bes, and C´ecile Roisin. Constraints for multimedia documents. In
Proceedings of the Second International Conference and Exhibition on the Practical Ap-
plication of Constraint Technology and Logic Programming, Manchester, United Kingdom,
April 2000.

[137] Jojada J. Tirtowidjojo, Kim Marriott, and Bernd Meyer. Extending svg with constraints. In
Proceedings of the Sixth Australian World Wide Web Conference, Cairns, Queensland Aus-
tralia, June 2000. Poster to appear.http://www.dgs.monash.edu.au/˜jojada/
ConstraintSVG.html .

[138] Christopher J. Van Wyk. A high-level language for specifying pictures.ACM Transactions
on Graphics, 1(2):163–182, April 1982.

[139] Brad Vander Zanden. An incremental algorithm for satisfying hierarchies of multi-
way dataflow constraints.ACM Transactions on Programming Languages and Systems,
18(1):30–72, January 1996.

[140] Brad Vander Zanden, Brad A. Myers, Dario A. Giuse, and Pedro Szekely. Integrating pointer
variables into one-way constraint models.

165

[141] Brad Vander Zanden and Scott A. Venckus. An empirical study of constraint usage in
graphical applications. InProceedings of UIST 1996, pages 137–146, Seattle, Washington,
November 1996.

[142] Larry Wall, Tom Christiansen, and Randal L. Schwartz.Programming Perl. O’Reilly &
Associates, Inc., Sebastopol, California, 1996.

[143] Windowmaker. Web page, 1999.http://www.windowmaker.org .

[144] Andrew Witkin and Michael Kass. Spacetime constraints. InProceedings of SIGGRAPH
1988, pages 159–168, Atlanta, Georgia, August 1988.

[145] Steve Wolfman and Dan Weld. The LPSAT engine and its application to resource planning.
In Proceedings of the 1999 International Joint Conference on Artificial Intelligence, 1999.

166

VITA

Gregory Joseph Badros was born on 24 February 1973 in Buffalo, New York. In
June 1991, he graduated as valedictorian from James M. Bennett High School in Sal-
isbury, Maryland. In May 1995, he receivedmagna cum laudea Bachelor of Science
degree in both Mathematics and Computer Science from Duke University in Durham,
North Carolina. Taking a one year hiatus from academic life, Greg then co-founded
Transworld Numerics, Inc., and worked in Durham and Bermuda as the company’s
Senior Research Scientist. In September 1996, Greg started graduate school and in
June 1998, he received his Master of Science degree in Computer Science and Engi-
neering from the University of Washington. Greg is the primary author of the Scheme
Constraints Window Manager and the Cassowary Constraint Solving Toolkit, and he is
a contributor to numerous other Free software projects, including GNU Guile Scheme.
His research interests include constraint technology, software engineering, program-
ming languages, and the Internet.

