
A Caching NFS Client for Linux

Greg J. Badros
gjb@cs.washington.edu

27 November 1999

Abstract

The Linux NFS client suffers from poor performance. As Linux has become more popular, its prim-
itive NFS client implementation has outgrown its usefulness. We describe numerous enhancements to
the Linux NFS client that improve performance. Specifically, we discuss better lookup and attribute
caching, asynchronous writing of data, and local disk caching of data file reads. We describe our imple-
mentation, and benchmark its performance against both the existing stable Linux NFS client and the
local-disk filesystem, ext2fs. Our implementation outperforms the 2.0.x kernel’s NFS client in all but
one benchmark, and improves on the basic client by up to a factor of 14 when reading from files that are
cached locally.

1 Introduction

Unlike more advanced Network File System (NFS) client implementations, such as those by Sun Microsys-
tems for SunOS and Solaris, the Linux 2.0.x NFS client has few performance features. Only asynchronous
read-ahead buffering and some rudimentary lookup attribute caching is performed. All writes are done
synchronously, resulting in write speeds that can be as low as 25KB/sec,1 and no caching of read data is
performed.

Despite the design limitations of NFS (e.g., no tokens, push-on-close, and stateless servers) commercially-
available clients achieve substantially better performance (on the order of MB/sec, not KB/sec) [Mic95].
This paper describes numerous performance improvements to the Linux NFS client which make a notable
difference to the usability of NFS-mounted partitions for Linux users. Among these are:

Asynchronous write buffering. Although the Linux 2.1.32 kernel introduced this feature, that kernel was
in development at the time this project began, so we integrated the asynchronous writing capabilities
of the newer kernels into the 2.0.x kernel series (the original integration is the work of Jan Sanislo,
oystr@cs.washington.edu).

Caching of lookup RPC results. The basic NFS client caches only the 64 most recent filename lookups,
and searches linearly through that list. Since lookup remote procedure calls are so common [Mac91,
p. 61], improvements to lookup caching can noticeably reduce network traffic and server load. Our
implementation enlarges the lookup results cache to 511 elements and uses a hash-table instead of a
linear list. This feature was largely implemented by Doug Zongker, dougz@cs.washington.edu.

Local disk caching of reads. Many NFS exported directories contain a large number of files which are
mostly read, and written only occasionally.2 Since many workstations have fast, large, often under-used
local disks (see also Minnich’s AutoCacher [Min93]), we implement read caching using the local disk
as a large repository. We rely on the underlying file system to use delayed writes and its own caching
to make writing to the cache efficient.3

1This speed was observed on an overloaded network where the client and the server were on separate subnets. For comparison,
both rcp and ftp wrote at over 100KB/sec.

2In fact, this is common for distributed file systems [WPE+83].
3Relative to 10Mbit ethernet, modern SCSI disks (with an efficient file system such as Linux ext2fs [CTT96] and bus-

mastering PCI controllers) are an order of magnitude faster in performance.

1

We limit our implementation to use Version 2 of the NFS protocol [Mic89] instead of exploiting some
of the possible benefits provided by Version 3 [Mic94] such as readdirplus and commit. We imposed this
constraint because few NFS V3 servers exist, and the base Linux NFS implementation does not yet provide
full V3 support.

To measure our performance improvements, we use the Andrews File System (AFS) benchmark suite
[HKM+88] along with some larger test cases, and some micro-benchmarks. In addition to measuring real
time, we count the number of remote procedure calls of various types. Since RPCs are so expensive (especially
on a slow network), they tend to dominate the performance of an NFS client. Our goal has been to reduce
RPCs.

The next section discusses the design and overall architecture of our implementation. Section 3 describes
the details of the asynchronous writing and lookup caching implementations, and section 4 explains the im-
plementation of read caching. Section 5 describes how we measured the performance of our implementation,
and shows the results of our benchmarks. Finally, sections 6 and 7 describe some possibilities for future work
and summarize the findings of this project.

2 Design and Architecture

Our primary design goal was to improve performance of the NFS client by reducing the number of remote
procedure calls through aggressive caching of lookups, attributes, and data pages. Our other design goals
were to: 1) minimize the impact on non-NFS filesystem performance; 2) minimize the increase in kernel
size and memory requirements; 3) allow cached data to persist across reboots; 4) not require a separate
partition for the cache files; 5) permit the cache files to be stored on an arbitrary filesystem (i.e., to not
assume ext2fs); 6) not decrease performance dramatically for any special cases (e.g., not use whole file
caching similar to AFS); and 7) allow sufficient customization of the cache parameters at module insertion
time. Our implementation achieves all of these goals.

Because was interested in performance, the bulk of our implementation is a module that resides in the
Linux kernel. The asynchronous writing implementation, the caching of lookup results and attributes (section
3.2, on page 3), and the caching of read data pages (section 4, on page 4) to local disk are all performed
inside that NFS module.

The read caching is implemented at the virtual filesystem’s readpage level, so the granularity of the local
disk cache is the page size (4 KB). New data pages from an NFS server are written to the local disk cache
as they are read. The cached files on local disk may be sparse—pages of files in the cache are written as
they are received from the server. A simple bitmap resides in kernel memory to track the valid pages of each
locally cached file. When a page is requested, if it has been cached locally, the read is served from the local
disk after ensuring that the file has not changed on the server (by checking the modification time and file
size).

Limitations in the NFS protocol make it wasteful to update the local disk cache on writes, since the next
read will notice that the modification time on the server’s inode has changed, and we have no way of knowing
if we were the only client to have altered that inode in the interim. Thus, our cache file becomes invalid.
Instead, we simply mark the cache file as invalid when we write to the remote file it is caching. See section
6.1, on page 16, for more discussion of this issue.

Ideally, locally cached data pages should be available even across reboots as long as the server’s file
has not changed. To support this feature, an implementation would need to persist the information about
which pages are cached. However, that complication is substantial and would hinder performance since more
“maintenance” data would need to be written each time a remote file’s page is copied to the local cache.
Instead, we mark cached files as complete when we have cached all of its pages locally. We then permit only
those marked files to be used after a reboot. This approach reduces the required maintenance upon reads of
individual pages, but gives up the ability to cache files that are not read completely. However, executable
binaries generally are paged-in dynamically—they are often not read in their entirety. If an NFS partition
held mostly executables, our design as described might only be able to retain a small fraction of its cached
data pages between reboots.

To combat the negative affects from partially-cached files that only rarely get read in their entirety, our
implementation provides a kernel thread to “fill in” missing pages of cache files. When network traffic is

2

low, our nfsfillind daemon reads previously unread (and therefore uncached) pages from the server, thus
eliminating the holes in a cached file so that we can mark the cache file as complete (see section 4.2, on page
8).

For ease of development, testing, and debugging, we have used privileged user-level programs where
possible to simplify the code that must live in the kernel. Specifically, we have extended the user-level mount
utility to understand our cache parameters (see section 4.1, on page 5) and introduced a user-level daemon
to free space in the local disk cache when it fills.

Our user-level NFS cache cleaner daemon is called nccd (see section 4.3, on page 9). When cache space is
exhausted, our basic nccd removes the least recently used cache files, thus freeing space for creating new cache
files. The kernel and nccd communicate via two mechanisms: 1) the kernel informs the cleaner when it needs
to remove some old files by writing to a distinguished file in the cache directory; and 2) the nccd informs the
kernel of changes in the amount of disk space used for each remote via a pseudo-device /dev/nfs-cache-space

(e.g., at startup to compute the usage of files already in the cache, and after cleaning to report the amount
of space freed). Because it is a user-level program, the policy decisions made by nccd about how to manage
the cache space are easy to experiment with and customize.

3 Asynchronous Writing and Lookup Caching Implementation

3.1 Asynchronous Writing

The Linux 2.0.x NFS client issues a synchronous remote procedure call for each write system call. This
is inefficient when performing many small writes in succession. Unfortunately, numerous small sequential
writes is a common situation as many programs (e.g., gcc and ld) simplify their output loops by expecting
that the underlying file system will merge write requests through some kind of buffering. Not merging write
requests results in unacceptable performance and is corrected in versions of the kernel since 2.1.32. Although
our implementation pre-dates the stable 2.2.x kernel series, we me integrated those changes to the NFS client
into the 2.0.27 kernel that we targeted. See the 2.2.x kernel series for details of the improved asynchronous
write behaviour.

3.2 Lookup Caching

Lookups of files and retrieval of file attributes constitute a significant fraction of NFS traffic.4 Clients can
reduce this traffic by caching file and directory attributes for a few seconds, so that getting attributes for
files that have been recently accessed can be performed without communicating with the server.

The Linux 2.0.27 implementation of lookup caching has two shortcomings. Accessing the cache is expen-
sive since a linear search is used to find elements (requiring a complete pass for each cache miss). Partially
because of this slow search, the size of the cache is fixed at 64 entries. This small cache size limits the number
of hits, reducing the effectiveness of the cache in avoiding RPCs. Since the lookup-cache is a system-wide
resource, the small 64 element cache is easily exhausted. By increasing the number of cached attributes, we
will observe fewer cache misses which will reduce network traffic and server load.5

We have replaced the linear array with a hashing scheme to allow for more efficient operations, thus
reducing client CPU usage and permitting larger cache sizes. The hash value is computed from the directory
inode and the filename. Collisions are resolved with side chaining. To avoid a kmalloc() call for each cache
entry insertion, the cache is preallocated in a single block and initially organized into a free list. If we attempt
to add an entry to the cache and the free list is exhausted, a scavenging pass runs over all the entries in the
cache and moves expired ones to the free list. In the unlikely event that this scavenging fails to produce any
free slots, the new entry is dropped instead of being added to the cache. It is common when searching the
cache for a file to find an expired entry for that file. In this case the entry is immediately moved to the free
list, so that when the lookup RPC completes, the insertion will always find a free spot without scavenging.

4In addition, improved read caching (see section 4, on page 4) will strictly increase the fraction of all RPCs that are lookups
or getattrs.

5Lazowska et al. noted that the server CPU is the primary bottleneck for scaling distributed file systems [LZCZ86].

3

A complication in lookup caching is that the cache can be accessed in two ways. The usual method is to
lookup the file inode given the directory inode and the filename; the cache is optimized to handle this case
efficiently. The second access method is when we have the file inode and want to update the file attributes
field stored in the lookup cache. This case occurs, for instance, when a read RPC returns the current file
attributes along with the read data. We avoid this case whenever possible because it requires a linear-time
search of the entire cache. The need to perform a linear search limits how large we can make the cache
before the client CPU time spent in these searches overwhelms the advantage in lookup speed. (We chose
not to provide a reverse-hash to avoid requiring even more precious kernel memory for the lookup cache.)

4 Read Caching Implementation

The Linux 2.0.x NFS client translates directly between the VFS interface and the NFS protocol (which is
basically an RPC-based version of the standard UNIX file system operations).6 We intercept readpage system
calls, and attempt to pass them off to the caching filesystem (i.e., ext2fs on the local disk). See Figure
1 for details of how page reads are satisfied. Files are cached (as decided at the “Should we cache file?”
decisions in the flowchart) only if they are larger than a specified minimum size (currently 1 page, 4KB),
smaller than a specified maximum size (currently 4096 pages, 16 MB), and not changed recently (currently,
this timeout is 30 seconds). When a cached file is subsequently read, those reads are served from the local
cache file instead of sending read requests to the server.

We cannot avoid all server traffic even when reading unchanged files: the stateless nature of the NFS
protocol requires us to confirm with the server that the file has not changed since we last read it. However,
when reading large files, the majority of the disk traffic is due to many read RPCs, all of which are eliminated.7

All cached file data exists only in disk-based structures. Each remote file from which a page is cached
has a corresponding local cache file. The name of the local file is the concatenation of the server name,
the server’s superblock number, and the inode number of the file being cached. For example a local cache
file called holden,2-23 stores page data from the remote file with inode number 23 on the server named
“holden” in the partition whose superblock is on device 2. These files are all stored in a single-level directory
structure. We exploit ext2fs’s ability to efficiently store a sparse file (i.e., one where only a small portion
of the total blocks have had any data written to them), and store only those data blocks that the client has
actually read (not whole files). Also, after a read is satisfied out of the local disk cache, we send a setattr to
the server to update its last-accessed time (atime) if the prior access was more than 30 seconds ago. Since
the disk cache can persists for months or longer, it is important that the access times are accurate.8

Obviously, files may not be read in their entirety (e.g., executables, which are paged-in on demand).
Thus, we must maintain in-kernel data structures to track which pages of each inode have been cached to
local disk. We use a packed binary array representation, and also include the number of total pages, and
the number valid, along with some information needed by nfsfillind to finishing reading a file after the
NFS inode may have left memory. See Figure 2 for details. When we recognize that a file has had its last
page written to the local cache (done in constant time with the count of valid pages, not with the bitmap),
we mark the cache file as complete using its u+x mode attribute bit, and can then deallocate the bitmap of
valid pages.

To support the relationship between an inode for a file on the server and the inode of the file on the local
disk that is caching the remote file, we made two significant changes to the kernel’s data structures: 1) all
inode’s now have a pointer to a structure about the inode they are caching; and 2) all inode’s can specify a
clear inode hook to be called when that inode is chosen to be reused (“putting” an inode to a 0 count does
not remove it from memory). See Figure 3 for details.

Because files may change on the server (due to either our machine or another client on the system), we
must also invalidate cache entries occasionally. When we notice that the NFS inode that we are caching has
a new modification time or file size, we mark our local cache as invalid by turning off its u+x bit (if it was

6In fact, Sun’s initial VFS interface (and corresponding Vnode—virtual node—interface) were introduced to support their
NFS implementation [SGK+85, p. 124].

7Like most other implementations, we permit use of cached lookup RPC results to reduce the number of times we must ask
the server if the file has not changed to once every 3-5 seconds.

8Surprisingly, neither Linux nor Solaris clients update the access time upon reading a page from the VFS memory cache.

4

Read(fd,128)Read(fd,128)

VFS file read operation
 calls nfs_file_read
 calls generic_file_read
 calls nfs_read_page

VFS file read operation
 calls nfs_file_read
 calls generic_file_read
 calls nfs_read_page

VFS write the page
to inodeCache,

and mark page valid

VFS write the page
to inodeCache,

and mark page valid

VFS read_page
on inodeCache
VFS read_page
on inodeCache

Is Page in Memory?Is Page in Memory?

Done!Done! Should we cache file?Should we cache file?

Should we cache file?
And do we have space?
Should we cache file?

And do we have space?

Read Page
From Server
Read Page
From Server

Open inodeCache if not already opened
(create it if necessary and not out of space)

Open inodeCache if not already opened
(create it if necessary and not out of space)

Is page in local disk cache?Is page in local disk cache?

Is file complete in
local disk cache?

(u+x attribute set?)

Is file complete in
local disk cache?

(u+x attribute set?)

Is cache file now complete?
(cpagesValid == cpagesTotal?)

Is cache file now complete?
(cpagesValid == cpagesTotal?)

Mark as complete
(set u+x attribute)
Mark as complete
(set u+x attribute)

Done!Done! Done!Done!

Done!Done!

No

Yes

Yes

Yes
Yes

Yes

No

No

No Yes

No

If >30 sec since last update,
Update inode atime

If >30 sec since last update,
Update inode atime

No

Figure 1: Read caching flowchart. Heavy boxes are decision points.

complete) and updating the in-kernel data structures (e.g., removing the bitmap, and resetting the count of
valid pages to zero). If the cache file’s inode is later cleared from memory without having read sufficiently
many pages to justify filling in, the cache file is unlinked, and the space is reused.

Ideally we would be able to update the disk cache for local writes. However, the NFS protocol has no
way of letting a host know that it is the only writer to the file.9 After changing only a single byte of a 4MB
file that exists in our local disk cache, all the NFS client can subsequently tell when it reads that file again
is that the modification time (mtime) has changed. Because we cannot conclusively confirm that it was only
our client that affected the change, we must invalidate all of the pages we had cached locally. This is the
principal reason why our implementation does not cache files that have changed recently.

4.1 Mount Parameters for Caching

Our NFS client permits flexible control over the cache parameters. We provide several new configurable
arguments which can be specified in the usual way in the /etc/fstab file and our enhanced mount utility
exposes those parameters to our NFS client via the nfs server structure. Each remote filesystem specifies
these parameters independently.

The parameters that we have added to configure our caching scheme are:
9This deficiency is removed in NFS V3; see section 6.1, on page 16 for details.

5

super_block

NFS Mount

s_dev (device id)

device, number
mode bits
nlink, uid, gid, size, [amc]time
…….
* super_block
*i_prev
*i_next
*inode_being_cached_info
clear_inode_hook()

device, number
mode bits
nlink, uid, gid, size, [amc]time
…….
* super_block
*i_prev
*i_next
*inode_being_cached_info
clear_inode_hook()

char root_path[]
*inodeLocalDir
*inodeFullStateIndicatorFile
cUpdatesBeforeNextStat
blocks_available
min_free
*next_nfs_cache

char root_path[]
*inodeLocalDir
*inodeFullStateIndicatorFile
cUpdatesBeforeNextStat
blocks_available
min_free
*next_nfs_cache

device, number
mode bits
nlink, uid, gid, size, [amc]time
…….
* super_block
*i_prev
*i_next
*inode_being_cached_info
clear_inode_hook()

device, number
mode bits
nlink, uid, gid, size, [amc]time
…….
* super_block
*i_prev
*i_next
*inode_being_cached_info
clear_inode_hook()

inode_device, inode_number
*inodeNFS -or- nfs_filehandle
*nfs_sb_info
*inodeLocalDir // for unlinking
 *pchValidBitmap
cpagesValid, cpagesTotal

inode_device, inode_number
*inodeNFS -or- nfs_filehandle
*nfs_sb_info
*inodeLocalDir // for unlinking
 *pchValidBitmap
cpagesValid, cpagesTotal

inode inode

inode_being_cached_info

nfs_cache

Local Disk Cache

NFS Inode for File Being Cached Ext2 Inode for Cache File

--*----*----*--*****--*----*----*-***-**

Packed binary bitmap

Valid Pages Bitmap

Info about the cache file

nfs_server
root_nfs_filehandle
*nfs_cache
dc_pages_used, dc_max_size

nfs_sb_info

nfs_filehandle
….
read_cache_jiffies
read_cache_mtime
*inodeCache

i_data
i_flags
i_version
….
i_new_inode

ext2_inode_infonfs_inode_info

null

Figure 2: Kernel data structures. Bold text denotes new data members, heavy boxes denote added data
structures.

6

inode

unused

Cnt=0

inode

unused

Cnt=0

inode

NFS

Cnt=1

inode

unused

Cnt=0

inode

NFS

Cnt=1

inode

Cache

Cnt=1

inode

NFS

Cnt=0

inode

Cache

Cnt=0

inode

NFS

Cnt=0

inode

Cache

Cnt=1

inode

NFS

Cnt=0

inode

Cache

Cnt=0

inode

Arbitrary

Cnt=1

inode

Cache

Cnt=1
filehandle

inode

Arbitrary

Cnt=0

inode

Cache

Cnt=0

nfs_read_inode

nfs_readpage

iput
(<10% cached)

iput
(>10% cached)

clear_inode,
clear_inode_cache

clear_inode,
clear_inode_cache

Fill-in complete

Fill-in complete

A

B

C

D

E

F

G

H

NFS inode is reused

Figure 3: The life-cycle of an inode, and its corresponding cache file’s inode. From A to B a remote file is
first accessed, thus assigning an inode structure to that file. From B to C the first page is read from that
remote file, so another inode is assigned to the corresponding local cache file; the NFS inode keeps a pointer
to the cache inode so read pages can be written to the local disk. We stay in state C while the file is open,
and then move to either D or F when the closing of the remote file results in putting of the NFS inode.
When the remote file is closed, we choose to discard the cached pages if we’ve only read less than 10% of
the file—that case corresponds to F, where we put the cache inode back on the free list, and can reuse both
inodes (back to state A). If we read more that 10% of the file, we move instead from C to D. While in D,
the nfsfillind reads subsequent pages of the file in the background until the local cache contains all of the
remote file’s data pages. When the cache file is complete, we progress to E, where we have put the cache
inode back on the free list, and can then return to A after calling the appropriate inode-clearing hooks.
States G and H represent a slight complication of the filling-in procedure when the inode that was used for
the remote file needs to be reused.

7

mount syntax Internal name Description
[no]dc_enable NFS_MOUNT_DC_ENABLED Enables caching
[no]dc_read NFS_MOUNT_DC_READS Enables reading from the cache (but not updating)
dc_root=<dir> disk_cache_root Location of disk cache
dc_min_free=# disk_cache_min_free Min free space for that cache partition
dc_max_size=# disk_cache_max_size Maximum cached data for this partition (kb)

The first option, dc enable, controls whether files read from the remote partition are to be cached. By
selectively enabling caching for remote partitions, a system administrator can choose not to cache certain
partitions which may be written to frequently. Such partitions are not likely to benefit from a local cache.
The second option is related: dc read, permits a partition to have files already cached locally be used, but
not update the cache when remote files changes, or a new remote file is accessed. This option is especially
useful during debugging.

The next two options, disk_cache_root and disk_cache_min_free, specify the directory where the
cache files should live and how much space must minimally remain free on the local disk partition where that
directory resides. Different remote partitions may be cached in different directories, but do not need to be.
The local cache location is just an ordinary directory that is dedicated to holding cache files and information.
For example, if a host has a large /tmp partition, a system administrator could create /tmp/.nfs-cache and
use that for the NFS cache—no special partitioning or reformatting is required.

Finally, the disk_cache_max_size option permits specifying the maximum amount of local disk space
to use for caching a given remote partition. Using this parameter, a system administrator can allocate more
local disk space for heavily caching an important remote partition, or limit the amount of local disk space a
rarely-needed partition is allowed to consume.

The flexibility of our caching scheme permits the caching NFS client to be introduced into a production
system with minimal hassle and effort.

4.2 Filling in Partially Cached files

Our design strongly prefers completely cached files: such files do not require a kernel structure to track the
valid pages, they can persist across reboots, and they do not increase pressure on the limited in-memory
inode resources (while a file is being filled in, two inode structures are maintained—one for the remote file,
and one for the local cache file). However, many files, including the all-important dynamically paged-in
executables, are not read in their entirety. To combat the possibility that long-term operation could lead to
a cache full of mostly-complete files, we created a way to bridge the gap between NFS-like caching at page
granularity for performance of small reads on many files and AFS-like caching of whole files for long-term
local disk storage.

To accomplish this, we have a background kernel thread called nfsfillind which looks for partially cached
files and attempts to take advantage of idle time to fill them in. When network traffic is low, this thread
periodically looks at the set of partially cached files. It chooses one that would benefit from being filled-in
(the simple metric we use is fewest-remaining pages first, with ties broken by total file size) and reads in an
unread page, saving it to the local disk cache. In this way, we avoid insisting that the first read of a file get
all the pages from the server immediately, but instead choose to get the rest of a file in the background.

This “fill-in” process will continue as long as there are partially cached files.10 In order to allow partially
cached files to be kept and filled in even if the original user process which read the file has closed it, the inode
for the local cache file is augmented with the NFS file handle for the file. Using this handle, the nfsfillind

process can read pages from the server even if the inode representing the NFS version of the file has left
memory.11

10In our architecture, it does not make sense to stop filling in because of space concerns, because the cleaning process can
only operate on completely cached files. See section 4.3, on page 9.

11Fill-in using the filehandle after the NFS inode has left memory is not yet implemented.

8

4.3 NFS Cache Cleaner

When the cache fills, some space needs to be freed to permit caching of more recently-accessed files to
continue (instead of just turning caching off). Our implementation presupposes that filling the disk is
reasonably rare, and that the policy for determining which cache files to remove should be left up to the
local system administrator.

Thus, we have developed a simple interface for a user-level “cleaner” program that the kernel awakens
when the cache fills. This process searches the cache directories, decides which files to remove, removes them,
and tells the kernel how much space has been freed. The exact sequence of events is:

1. The kernel realizes that it has run out of space. It does this by tracking of the number of cache pages
being used per mounted filesystem. On each write to the cache, the client checks for either of the
following cases:

(a) the number of cached pages for this remote partition exceeds the disk_cache_max_sizeparameter
specified when mounting; or

(b) the number of free pages on the cache filesystem (i.e., the local disk partition) is less than the
minimum free space permitted (the maximum of the disk_cache_min_free parameters for all of
the mounted filesystems which are sharing this cache directory).

2. The kernel writes a record of the violation to the file <cache root>/.FULL. The violation is specified as
a single line of information that the user-level cleaning process will need to do its job:

(a) In the case of maximum space exceeded, the current time and the mounted filesystem (a server
name and server device) are written to .FULL, and the group execute bit (g+x) is set on .FULL.

(b) In the case of a minimum free violation, only the current time is written (a minimum free violation
is viewed as being shared by all filesystems in the cache), and the owner execute bit (o+x) is set on
.FULL. Setting the owner execute bit disables further caching, thus avoiding an out-of-disk-space
error.

3. A user-level cache cleaning process notices the change in the .FULL file (it should normally block in
a loop checking the file size periodically—alternatively, the kernel could send the cleaner process a
signal). It then reads the list of violations (there may be more than one by the time the cleaner has
awakened) and handles the full partition(s). Our sample cache cleaning daemon, nccd, operates as
follows:

(a) candidates for removal are identified:

• when the maximum space for a remote partition is exceeded, only fully-cached files from that
partition are considered for removal; or

• when the minimum free space for a local disk is violated, all fully cached files in the cache
directory are considered equally.

(b) This set of candidates is then sorted by access time and the oldest 10% (by size) are removed. The
special kernel-generated pseudo-file /proc/net/nfs-mounts provides information about the space
consumption of the various mounted partitions so that the cleaning daemon can determine how
much space to free.

Note that only files that are completely cached are considered for removal. This constraint simplifies
freeing space because fully cached files have no special kernel data structures associated with them.
As a result, the user-level cleaning daemon can safely remove these files itself, rather than having to
request that the kernel do this on its behalf. The limitation of not permitting removal of partially-
cached files is not a problem in practice for two reasons: 1) the size of the cache is substantially greater
than the average size of the files in it; and 2) the fill-in thread (see section 4.2, on page 8) is working
to keep most of the cached files fully cached.

9

The first five tests are the five phases of the Andrews benchmark set:

andrew: making directories Creates an empty 21-directory hierarchy.
andrew: copying files Fills the created directory structure by copying 71 files into it.
andrew: statting Recurses through the directories twice, generating a stat system

call for every file.
andrew: intensive reading Recurses through the directories twice, searching every file for a

given string.
andrew: cpu intensive Builds a moderately sized package within the directory structure.

The next five tests work with large files:

untar big package Untars a 4.3MB archive containing approximately 400 files and
directories.

repeated ls-ing Lists directories totaling 500 files four times.
read a big file Reads a 6.1MB file.
read a big file again Reads the same 6.1MB file again.
copy a big file Makes a copy of a different 6.1MB file.

The last three tests perform smaller reads and writes:

random reads Performs 1,000 reads, ranging in size from 1 to 2,663 bytes, from
randomly chosen locations within a 4.3MB file.

small writes Performs 2,000 writes, appending the integers 1 to 2,000 (as strings)
to a file.

small reads and writes Like the small writes test, but rewinding and rereading the entire
file between each write (and performing only 1000 writes). This is
intended to show worst-case performance for our caching scheme
(since the read cache is invalidated on a write, all the work of
storing reads on local disk is wasted).

Table 1: Descriptions of the benchmark suite used in performance evaluation.

4. After the cleaning daemon removes the chosen files, it must inform the kernel of the results of its
actions. For each mounted filesystem from which files were removed, the cleaner must write a single
line record to the pseudo-device /dev/nfs-cache-space with the filesystem identifier (hostname and
device number pair) and the number of pages freed. This step ensures that the kernel is able to
maintain accurate information about how much disk space the cache consumes without requiring it to
ever scan the entire directory for usage information.12

5. Finally, the cleaning daemon should clear the execute bits on .FULL to re-enable caching.

By specifying a clean, simple interface between the kernel and a user-level process, we permit sophisticated
custom cache cleaning policies to be used. At the same time, this design decision dramatically simplifies the
in-kernel code at little performance cost.

5 Benchmarks and Results

To measure the performance of our NFS client, we measure elapsed time and RPC traffic for a set of 13
benchmarks. The thirteen tests we used are listed in Table 1. Each benchmark was run once by itself, and
once with 4 copies of the benchmark running in parallel from different top level directories. All single runs
were executed, followed immediately by the 13 parallel runs—the disk cache was not emptied in between.
We compare three implementations: the standard 2.0.27 NFS client, our enhanced NFS client, and the local
disk using ext2fs.

12This same interface is used at boot time (actually, just after the NFS client module is inserted) to inform the kernel of
space consumed by cache files that persisted across a reboot.

10

For all the benchmarks we used an isolated 10Mbit ethernet local area network with four hosts connected
via an eight port Kingston EtherX workgroup hub. The server was a 486/DX4-100 with 40MB of memory,
an ISA bus, and a 3Com 3c509 ethernet card running a standard Linux 2.0.29 kernel from a RedHat 4.0
distribution. The test partition we exported was from a 1GB IDE drive. No other disk activity was taking
place on the server during the test.

The test client was a Pentium 200 with 20MB of memory available, a PCI bus with a Adaptec 2940UW
SCSI controller, a Intel EtherExpress 100 ethernet card, and a 4GB wide SCSI disk. It was running either a
Linux 2.0.27 kernel patched with upgraded EtherExpress100 and Adaptec 2940UW drivers (this configuration
was also used when benchmarking the local disk performance) or our enhanced kernel with the same patches
and our improved NFS client module. The cache directory for our enhanced client was the same local disk
as used when measuring the local disk performance.

The two remaining machines on the network (a 486/DX4-75 and a Pentium 166, both with 3c509 ethernet
cards) were used to generate additional network traffic to slow down the network. The ping utility was used
to flood the network with icmp packets between those two hosts. Additionally, the server was using ping to
flood the network to simulate handling multiple hosts. This only reduced worst case round trip time to about
4ms (average round trip time as reported by ping was 0.7ms). The slower machine was used as the server
to more accurately represent the round-trip times on a reasonably-loaded server. This network environment
used for our measurements was still far faster than the target network of the University of Washington’s
computer science department.13

For the two NFS benchmark runs (standard and enhanced) we used a 5 second time-out for cached file
attributes (chosen because that is the timeout the BSD implementation uses [Mac91, p. 54]). We used a
30 second time-out for directory attributes as in the original Sun implementation [SGK+85]. Note that
increasing the expiration time further increases pressure on the cache since entries persist for almost twice
as long.

Though our client machine actually had 256MB of main memory available, we constrained it (via a lilo

configuration option) to use only the first 20MB of memory. This limits the size of the VFS-level memory
page buffering and reduces its affect on the runs. Additionally, it simulates the more realistic scenario of
requiring the majority of main memory for the actual workload (few users have 200MB of main memory
available for caching of disk pages). To further reduce the affect of VFS-level memory page buffering, we
read almost 8MB of unrelated files from the local disk between each pair of the 26 benchmarks (those pages
replace the relevant pages from the prior test that might benefit the following benchmark stage).

All of the remote procedure call data was collected using tcpdump running in raw mode on the client.
That data was then analyzed after the benchmarks completed.

Figures 4 and 5 shows elapsed time for each of the benchmark tests on the standard Linux 2.0.x NFS
client, our enhanced NFS client, and the local disk using ext2fs. Figures 6 and 7 compare RPC requests
generated by the standard client versus our enhanced client.

Figures 6 and 7 illustrate that our enhanced client never generates more RPC traffic than the standard
client. In particular, the figures show that whenever a file is cached and re-read, all the read RPCs are
eliminated.14 The figures also demonstrate the tremendous advantage asynchronous writing provides for the
“small writes” and “small reads and writes” benchmarks.

The reduction in RPCs is reflected in figures 4 and 5. For all the tests except the parallel “andrew:
copying files” and “random reads,” our enhanced client outperformed the standard NFS client. In those
two tests benchmarks we were only 3% and 8% slower respectively. This difference is attributable to the
overhead in caching files to local disk, and to measurement error. In all other tests (and notably all single
tests) we outperform the standard NFS client by as much as factor of 14 when reading already cached files,
and almost a factor of 100 for “small writes x 4.”

Much of the benefit from tests that did not directly result from the local disk caching came from reduced
getattr RPCs resulting from our larger cache, and from our fixing a performance bug in the standard NFS
client which resulted in its not exploiting attributes returned as a side effect of other RPCs. For one of the

13Worst case round trip times on the University of Washington computer science department network are often around 300ms
when communicating between subnets, with an average of more than 15ms during normal workday traffic.

14Since the cache is not cleared between the single run benchmarks and the parallel runs, both the parallel “read a big file x
4” and “read a big file again x 4” tests are serviced from the local disk cache—only the single “read a big file” test accesses the
file from the server.

11

E
la

ps
ed

 T
im

e,
 S

in
gl

e
B

en
ch

m
ar

ks

0102030405060

andrew: making directories

andrew: copying files

andrew: statting

andrew: intensive reading

andrew: cpu intensive

untar big package

repeated ls-ing

read a big file

read a big file again

copy a big file

random reads

small writes

small reads and writes

Time (sec)

S
ta

nd
ar

d
N

F
S

E
nh

an
ce

d
N

F
S

Lo
ca

l D
is

k

Figure 4: Elapsed time for single benchmarks

12

E
la

ps
ed

 T
im

e,
 P

ar
al

le
l B

en
ch

m
ar

ks

030609012
0

15
0

18
0

andrew: making directories
andrew: copying files

andrew: statting

andrew: intensive reading

andrew: cpu intensive

untar big package

repeated ls-ing

read a big file

read a big file again

copy a big file

random reads

small writes

small reads and writes

Time (sec)

S
ta

nd
ar

d
N

F
S

E
nh

an
ce

d
N

F
S

Lo
ca

l D
is

k

Figure 5: Elapsed time for multiple copies of the benchmarks running in parallel

13

R
P

C
 A

ct
iv

ity
, S

in
gl

e
B

en
ch

m
ar

ks

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

andrew: making directories

andrew: copying files

andrew: statting

andrew: intensive reading

andrew: cpu intensive

untar big package

repeated ls-ing

read a big file

read a big file again

copy a big file

random reads

small writes

small reads and writes

Number of RPCs

m
kd

ir
w

rit
e

re
ad

lo
ok

up
se

ta
ttr

ge
ta

ttr

Figure 6: RPC activity during single benchmarks

14

R
P

C
 A

ct
iv

ity
, P

ar
al

le
l B

en
ch

m
ar

ks

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

andrew: making directories x 4andrew: copying files x 4
andrew: statting x 4

andrew: intensive reading x 4
andrew: cpu intensive x 4
untar big package x 4

repeated ls-ing x 4

read a big file x 4

read a big file again x 4

copy a big file x 4

random reads x 4

small writes x 4

small reads and writes x 4

Number of RPCs

m
kd

ir
w

rit
e

re
ad

lo
ok

up
se

ta
ttr

ge
ta

ttr

Figure 7: RPC activity during parallel benchmarks

15

most realistic benchmarks (but one that we did not specifically target for our enhancements), the “andrew:
cpu intensive x 4,” we observed a better than 10% performance improvement over the standard NFS client.

As mentioned previously, real-world networks are often far slower than the network we used for bench-
marking. The relative performance of our enhanced client becomes even more impressive when the relative
cost of a remote procedure call increases due to more network traffic or a more distant connection between
client and server.

6 Future Work

6.1 Write Operations

There is substantial room for improvement in the write subsystem of the Linux NFS client. Because of the
NFS requirement that the server commit writes to stable storage, little can be done from the client side to
reduce real transfer time (aside from hardware solutions like Presto and NFS V3’s additional commit RPC).
A partially attainable goal is improved perceived response time: ultimately we still have to send the bits,
but we could extend the use of delayed-writes to let the user program that issued the write to continue
computing while the data is being sent.

There are two interesting issues with writing in general and asynchronous writing in particular that need
to be addressed. The first concern is the interaction between reads and writes. Logically, a read issued on a
client immediately after a write on that client should, independent of the server state and the world view of
other clients, read the new data. To do otherwise would weaken the already weak NFS consistency model
further than is reasonable. However, the simple “solution,” whereby data is first written to the local cache
and later sent to the server from there, cannot work in the NFS model. When a new page of a file is written
to the server, the timestamp on the server’s file will be changed. To the client, the file looks changed, but
it cannot tell if the change is the result of the update it just sent (assuming it remembers that it just wrote
a page) or from some other host. NFS does not allow the client to discover the instigator of the change,
and therefore the client is forced to either invalidate or update its cache as a hedge against the (admittedly
unlikely) possibility that the change on the server was not its own. NFS V3 corrects this shortcoming by
having write return the prior modified time as well as the new one [PJS+94, p. 142]. If the prior modified
time matches the client’s, then its write was the only one that transpired. Furthermore, again as a limitation
of NFS, the client cannot discover which pages of a file have changed, so if it chooses to update its cache,
it will have to re-fetch the entire file. Our current implementation does no caching of writes and invalidates
the NFS disk cache whenever data is written to a file.

The second concern with asynchronous writing pertains to closing files. Clients that are especially
interested in data integrity will prefer a policy where the close operation blocks until all pending writes to
the file have actually been written to stable storage on the server. On the other hand, a client concerned
more with performance might prefer to return immediately from close, and allow the data to be sent to
the server later. Although NFS requires the former semantics for close, the latter seems useful, so it would
make sense to provide a mount flag ([no]dc force on close) to control this possibly-dangerous behavior.15

Some studies suggest that 20-30% of newly-written data is deleted within 30 seconds [NWO88, p. 138].
Näıvely, these data appear to further support delaying writes, because there is a good chance that the file
will be removed before we get around to actually performing them. However, in general files are closed before
they are deleted, which would cause us to simply wait at that point for the writes to complete.

6.2 A kinder, gentler cleaning paradigm

One consequence of the current cleaning model (see section 4.3, on page 9), is that the cleaner is not invoked
until the kernel has actually run out of space for caching. Until the cleaner has finished freeing space, the
kernel disables caching. This behaviour puts pressure on the cleaner to react quickly—while it is running

15It is dangerous because closed files’ changes would not be immediately visible by other hosts that open the recently closed
file (and thus NFS disallows such behaviour). One can imagine writing a large file, then rshing to another machine to continue
working on that file. If the close completes and returns to the client before the data exists on the server, the second machine
will not see the entire file immediately.

16

we are effectively operating with a most-recently-used replacement policy, which we know is suboptimal for
most work patterns.

One way to relieve this situation is to have the kernel set both a “soft” and a “hard” limit on the cache
size. When the soft limit is reached, the cleaner is invoked, but caching is not disabled. In general, the
cleaning should complete before we reach the hard limit, at which point the kernel will (for self-defense) stop
caching, as it does now. This scheme would relieve the time-pressure on the cleaner and allow it to provide
more sophisticated policy decisions, and at the same time reduce (if not eliminate) the time the system
spends with caching disabled. Although we have not implemented this extension, it is straightforward to do
so.

7 Conclusion

The implementation, as it exists now, is complete and stable. Further investigation of some of the warning
messages we log would be useful to gain confidence in the client, but we have not observed data corruption
in several weeks of light use. Our enhanced NFS client can substantially improve the performance of Linux
boxes that use partitions mounted from a remote NFS server. Ideally, our design could form the basis of a
production-quality implementation in the latest development Linux kernel series.

8 Acknowledgements

I thank Doug Zongker and Andy Collins for their implementation efforts and design discussions throughout
the graduate operating systems class project which led to this paper. Doug is responsible for the imple-
mentation of the larger lookup cache, and Andy wrote the enhanced mount utility and a first version of the
cache cleaning daemon, nccd. I also thank Jan Sanislo for his initial integration of the 2.1.32 NFS client into
the 2.0.27 kernel, and for his hardware support and network expertise throughout this project, and Corey
Anderson who provided valuable feedback on a draft of this paper. This work was supported by a National
Science Foundation Graduate Research Fellowship.

References

[CTT96] Rémy Card, Theodore Ts’o, and Stephen Tweedie. Design and implementation of the second
extended filesystem. Web document, 1996. http://www.redhat.com:8080/HyperNews/get/fs/-
ext2intro.html.

[HKM+88] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed file system.
In ACM Transactions on Computer System, volume 6(1), February 1988.

[LZCZ86] Edward D. Lasowska, John Zahorjan, D. Cheriton, and W. Zwaenepoel. File access performance
of diskless workstations. In ACM Transactions on Computer System, volume 4(3), pages 238–268,
August 1986.

[Mac91] Rick Macklem. Lessons learned tuning the 4.3bsd reno implementation of the NFS protocol. In
Winter USENIX Conference Proceedings, pages 53–64. USENIX Association, January 1991.

[Mic89] Sun Microsystems. NFS: Network file system version 2 protocol specification. Technical report,
Sun Microsystems, Mountain View, CA, March 1989.

[Mic94] Sun Microsystems. NFS: Network file system version 3 protocol specification. Technical report,
Sun Microsystems, Mountain View, CA, February 1994.

[Mic95] Sun Microsystems. The NFS distributed file service: NFS white paper. Web document, March
1995. http://www.sun.com/solaris/wp-nfs.

17

[Min93] Ronald G. Minnich. The AutoCacher: A file cache which operates at the NFS level. In USENIX
Conference Proceedings, pages 77–83. USENIX Association, Winter 1993.

[NWO88] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the sprite network
file system. In ACM Transactions on Computer System, volume 6(1), pages 134–154, February
1988.

[PJS+94] Brian Pawlowski, Chet Juszczak, Peter Saubach, Carl Smith, Diane Lebel, and David Hitz. Nfs
version 3 design and implementation. In 1994 Summer USENIX, pages 137–152. USENIX, June
1994.

[SGK+85] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and
implementation of the sun network filesystem. In USENIX Conference Proceedings, pages 119–
130. USENIX Association, Summer 1985.

[WPE+83] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel. The locus dis-
tributed operating system. In Proceedings of the 9th ACM Symposium on Operating Systems
Principles, pages 49–69, October 1983.

18

