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Abstract

We desired a platform for researching advanced
window layout paradigms including the use of con-
straints. Typical window management systems
are written entirely in C or C++, complicating
extensibility and programmability. Because no ex-
isting window manager was well-suited to our goal,
we developed the Scwm window manager. In
Scwm, only the core window-management primi-
tives are written in C while the rest of the pack-
age is implemented in its Guile/Scheme exten-
sion language. This architecture, first seen in
Emacs, enables programming substantial new fea-
tures in Scheme and provides a solid infrastructure
for constraint-based window layout research and
other advanced capabilities such as voice recogni-
tion. We have used Scwm to implement an inter-
face to the Cassowary constraint solving toolkit to
permit end users to declaratively specify relation-
ships among window positions and sizes. The win-
dow manager dynamically maintains those con-
straints and lets users view and modify them.
Scwm succeeds in providing an excellent imple-
mentation framework for our research and is prac-
tical enough that we rely on it everyday.

1 Introduction

We desired a platform for researching advanced
window layout paradigms including the use of con-
straints. Typical window management applica-
tions for the X windows system are written en-
tirely in a low-level systems language such as C
or C++. Because the X windows libraries have
a native C interface, using C is justified. How-
ever, a low-level language is far from ideal when
prototyping implementations of sophisticated win-
dow manager functionality. For our purposes, a
higher-level language is much more appropriate,

powerful, and satisfying.

Using C to implement a highly-interactive applica-
tion also complicates extensibility and customiz-
ability. To add a new feature, the user likely must
write C code, recompile, relink, and restart the
application before changes are finally available for
testing and use. This development cycle is es-
pecially problematic for software such as a win-
dow manager that generally is expected to run for
weeks at a time. Additionally, maintaining all the
features that any user desires would result in ter-
rible code bloat.

An increasingly popular solution to these prob-
lems is the use of a scripting language on top of
a core system that defines new domain-specific
primitives. A prime example of this architecture is
Richard Stallman’s GNU Emacs text editor [39].
In the twenty years since the introduction of
Emacs, numerous extensible scripting languages
have evolved including Tcl [34], Python [22],
Perl [41], and Guile [11, 36]. Each of the first
three languages was designed from scratch with
scripting in mind. In contrast, Guile—the GNU
Ubiquitous Intelligent Language for Extension—
takes a pre-existing language, Scheme, and adapts
it for use as an extension language.

We are exploring constraint-based window layout
paradigms and their user interfaces. Because we
are most interested in practical use of constraints,
we decided to target the X windows system and
build a complete window manager for X/11. We
chose to use Guile/Scheme as the extension lan-
guage for our project that we named Scwm—the
Scheme Constraints Window Manager. The most
notable feature of Scwm is constraint-based lay-
out. Whereas typical window management sys-
tems use only direct manipulation [37] of win-
dows, Scwm also supports a user-interface for



specifying constraints among windows that it then
maintains using our Cassowary Constraint solving
toolkit [1]. Much of the advanced functionality of
Scwm is implemented in Scheme, thus exploiting
the embedded-extension-language architecture.

The next section discusses some background is-
sues. Section 3 describes the Scwm system in
detail and discusses some of the benefits and dif-
ficulties that arise in using Guile/Scheme. Sec-
tion 4 describes the constraint-based capabilities
of Scwm. Section 5 mentions related work, and
section 6 discusses future work and concludes.

2 Background

Scwm leverages numerous existing technologies
to provide its infrastructure and support its ad-
vanced capabilities.

2.1 X Windows and fvwm2

A fundamental design decision for the X window-
ing system [32] was to permit an arbitrary user-
level application to manage the various applica-
tion windows. This open architecture permits
great flexibility in the way windows look and be-
have.

X window managers are complex applications.
Many Xlib library functions wrapping the X
protocol are specific to the extraordinary needs of
window managers. Because our goal is to do in-
teresting research beyond that of modern window
managers, we used an existing popular window
manager, fvwm2, as our starting point [12]. In
1997 when the first author began the Scwm
project with Maciej Stachowiak, fvwm2 was
arguably the most used window manager in the
X windows community. It supports reasonably
sophisticated configuration capabilities via a
per-user .fvwm2rc file that is loaded once when
fvwm2 starts. To tweak a parameter, end users
edit their .fvwm2rc files using an ordinary text
editor, save the changes, then restart the window
manager to activate the change. The fvwm2
configuration language supports a very restricted
form of functional abstraction, but lacks loops
and conditionals.

Despite these shortcomings, fvwm2 does provide
a good amount of control over the look of win-
dows and has evolved over the years to meet com-
plex specifications (e.g., the Interclient Communi-
cation Conventions Manual, or ICCCM [35]) and

deal with innumerable quirks of applications. By
basing Scwm on fvwm2, we leveraged those capa-
bilities to ensure that Scwm was at least as well-
behaved as fvwm2. Our fundamental change to
fvwm2 was to replace its ad-hoc configuration lan-
guage with Guile/Scheme [11].

2.2 Scheme for Extensibility

Guile [11] is the GNU project’s R4RS-compliant
Scheme [8] system designed specifically for use as
an embedded interpreter. Scheme is a very simple,
elegant dialect of the long-popular Lisp program-
ming language. It is easy to learn and provides
exceptionally powerful abstraction capabilities
including higher-order functions, lexically-scoped
closures and a hygienic macro system. Guile
extends the standard Scheme language with a
module system and numerous system libraries
wrappers (e.g., POSIX file operations).

2.3 Embedded Constraint Solver

Cassowary is a constraint solving toolkit that in-
cludes support for both arbitrary linear arith-
metic equalities and inequalities [1]. We imple-
mented the Cassowary toolkit in C++, Java, and
Smalltalk, and created a wrapper of the C++
implementation for Guile/Scheme. Thus, it is
straightforward to use the constraint solver in a
broad range of target applications.

In addition, the Cassowary toolkit permits numer-
ous hooks for extension. Each constraint vari-
able has an optional attached object, and the con-
straint solver can be instructed to invoke a call-
back upon changing the value assigned to any
variable and also upon completion of the re-solve
phase (i.e., after all variable assignments are com-
pleted). Scwm exploits these facilities to isolate
the impact of the constraint solver on existing
code.

3 The System

Scwm is a complex software system that empha-
sizes extensibility and customizability to enable
sophisticated capabilities to be developed and
tested quickly and easily. The window man-
ager embraces the embedded-scripting language
architecture first introduced by Emacs (sec-
tion 3.1) and it further exploits Guile/Scheme’s
support for dynamically-loadable binary modules
(section 3.2).



SCWM_PROC( X_property_get,

"X-property-get",

2, 1, 0,

(SCM win, SCM name, SCM consume_p))

/** Get X property NAME of window WIN. */

#define FUNC_NAME s_X_property_get

{

SCM answer;

VALIDARG_WIN_ROOTSYM_OR_NUM_COPY(1,win,w);

VALIDARG_STRING_COPY(2,name,aprop);

VALIDARG_BOOL_COPY_USE_F(3,consume_p,del);

...

XGetWindowProperty(...);

... answer = ...;

return answer;

}

#undef FUNC_NAME

Figure 1: An example Scwm primitive.

This extra power and incredible extensibility can
complicate using the window manager. To sim-
plify configuration, Scwm permits developers an
easy way to declaratively define various options.
Scwm then automatically builds a graphical user-
interface that enables end users to easily manipu-
lating those parameters (section 3.3).

Additionally, the use of a scripting language re-
quires the developer to maintain various software-
engineering invariants to avoid hard-to-find bugs.
We developed a technique to verify and warn de-
velopers when the Guile-required coding conven-
tions are violated (section 3.4).

Another challenge was embedding Cassowary in
Scwm reasonably non-invasively. To avoid alter-
ing all of the functions that access or mutate fields
of the window structure required exploiting some
of the extensibility features built into the con-
straint solving toolkit (section 3.5).

The current implementation of Scwm contains
roughly 32,500 non-comment, non-blank lines of
C code, 800 lines of C++ code, and 25,000 lines of
Scheme code. The Guile/Scheme system is about
44,000 lines of C code and 11,500 lines of Scheme
code. Finally, the Cassowary constraint solving
toolkit is about 9,500 lines of C++ code in its
core, plus about 1,400 lines of C++ code in the
Guile wrapper.

3.1 Basic philosophy

Our first version of Scwm was a simple derivative
of its predecessor, fvwm2, with the ad-hoc config-

(define*-public (window-class

#&optional (win (get-window)))

"Return the class of window WIN."

(X-property-get win "WM_CLASS"))

Figure 2: The “window-class” procedure.

uration language replaced by Guile/Scheme. Like
fvwm2, Scwm reads a startup file containing all of
the commands to initialize the settings of various
options. Most fvwm2 commands have reasonably
straightforward translations to Scwm sentential
expressions. For example, these fvwm2 configura-
tion lines:

Style "*" ForeColor black
Style "*" BackColor grey76

HilightColor white navyblue

AddToFunc Raise-and-Stick
+ "I" Raise
+ "I" Stick

Key s WT CSM Function Raise-and-Stick

are rewritten for Scwm in Guile/Scheme as:1

(window-style "*" #:fg "black"
#:bg "grey76")

(set-highlight-foreground! "white")
(set-highlight-background! "navyblue")

(define* (raise-and-stick
#&optional (win (get-window)))

(raise-window win)
(stick win))

(bind-key ’(window title) "C-S-M-s"
raise-and-stick)

Although the simpler and more regular syntax is
more convenient for the end user, the greatest ad-
vantage of using a real programming language in-
stead of a static configuration language stems from
the ability to extend the set of commands (either
by writing C or Scheme code) and to combine
those new procedures arbitrarily.

1Because the fvwm2 configuration language is so limited,
it is possible to mechanically convert to Scwm commands;
we provide a reasonably-complete automated translator for
this purpose.



Adding a new Scwm primitive is easily done by
writing a new C function that registers itself with
the Guile interpreter. For example, after imple-
menting a “X-property-get” primitive in C (fig-
ure 1), we can write a new procedure to report
a window’s class, which is just the value of its
WM CLASS property (figure 2). Then we can use that
window-class procedure interactively by writing:

(bind-key ’all "C-S-M-f"
(lambda ()
(let* ((win (window-with-focus))

(class (window-class win)))
(if (string=? class "Emacs")

(resize-window 500 700 win)
(resize-window 400 300 win)))))

The above expressions, when evaluated in Scwm’s
interpreter, will make the user’s “Control +
Shift + Meta + f” keystroke resize the window
to either 500 by 700 pixels if the currently-focused
window is an Emacs application window, or 400
by 300 pixels otherwise.

The advantages of Scwm’s extensible architec-
ture are even more recognizable in the presence
of independently-developed Guile extensions that
are then accessible to the window manager. Via
standard Guile modules, Scwm can read and parse
web pages, download files via ftp, do regular ex-
pression matching, and much more.

3.2 Binary Modules

Because each user only needs a subset of the full
functionality that Scwm provides, it is important
that users only pay for (in terms of size of the pro-
cess image) the features they require. Guile, un-
like Emacs Lisp, enables creation of dynamically-
loadable binary modules to define new primitives.
Without this feature, all primitives would need to
be defined in the Scwm core, thus complicating
the source code and increasing the size of the re-
sulting monolithic system.

The voice recognition module based on IBM’s
ViaVoicetm software is an excellent example of the
benefits of dynamically-loaded extensions. Some
users do not to use that feature—perhaps because
the library is not available on their platform or
maybe because they have no audio input device.
Those users will never have the module’s code
loaded. Additionally, if ViaVoice does not exist
at compile time, the voice recognition module will
not even be built.

Implementing the module was also straightfor-
ward. After getting a sample program from IBM’s
ViaVoicetm voice recognition engine working, it re-
quired less than six hours of development effort to
wrap the core functionality of the engine with a
Scheme interface. A grammar describes the vari-
ous utterances that Scwm understands and the C
code asynchronously invokes a Scheme procedure
when a phrase is recognized. Because those action
procedures are written in Scheme, the responses to
phrases can easily be modified and extended with-
out even restarting Scwm.

3.3 Graphical configuration

A great example of the extensibility that Guile
provides Scwm is the preferences system for
graphical customization. Novice Scwm users are
unlikely to want to write Scheme code to configure
the basic settings of their window manager, such
as the background color of the currently-active
window’s titlebar. A graphical user interface is
necessary to manage these settings, but there are
potentially a huge number of configurable param-
eters. Undisciplined maintenance of a user inter-
face for those options would be tedious and error-
prone.

Fortunately, Scwm can leverage its Scheme
extension language to ease these difficulties.
The defoption module provides a macro
define-scwm-option that permits declarative
specification of the conceptual and functional
attributes of a configuration option.2 To
expose a graphical interface to the *highlight-
background* configuration variable, the Scwm
developer need simply write:

(define-scwm-option

*highlight-background* "navy"

"The bg color for focused window."

#:type ’color

#:group ’face

#:setter (lambda (v)

(set-highlight-background! v))

#:getter (lambda () (highlight-background)))

This code states that *highlight-background*
is an end user configurable variable that will con-
tain a value that is a color. It also specifies that
the variable can be grouped with other variables

2Recent versions of Emacs [39] provide a similar feature
in their “customize” package. The layout of their user-
interfaces is simpler, though, as no attempt is made to
create a fully graphical interface.



into a face category. Finally, setter and getter
procedures are specified to teach Scwm how to
alter and retrieve the value.

The preferences module then accumulates all of
these specifications and dynamically generates the
user interface shown in figure 3.3 This modular
approach also enforces the separation of the vi-
sual appearance from the desired functionality—a
visually-distinct notebook-style interface with the
same functionality is also available.

3.4 Verifying Coding Conventions

Much of the Scwm C source code describes im-
plementations of new Guile primitives. That code
must adhere to numerous conventions required by
the Guile library. These conventions generally lie
outside the realm of what the C programming lan-
guage can express directly and often involve exten-
sive use of the C preprocessor, cpp.

Consider the X property get function from fig-
ure 1. The SCWM PROC, FUNC NAME, and VALIDARG *

expressions are all macro invocations that man-
age some of the complexities in consistently fol-
lowing Guile conventions for defining a new proce-
dure and appropriately signalling arguments that
are of the wrong type. Although these macros
are invaluable, there are numerous dependencies
throughout the source code that the C compiler
can not enforce.

For example, figure 1’s VALIDARG STRING COPY

macro invocation has three arguments: the first
two arguments are an index to a formal argument
and the name of that argument. Suppose the
index is incorrectly given as 1 instead of 2. If such
a mis-match occurs, the user of the primitive will
encounter the misleading error message Wrong
type argument in position 1: "WM CLASS"
when they dynamically pass a non-string as the
second argument to the primitive. Violating
other similar conventions can have more severe
consequences including corruption of the Scheme
heap. To improve reliability, it is imperative that
these source-code invariants are checked.

Our solution is to augment our documentation ex-
traction tool to also check these conventions stati-
cally. We regularly run a 1200 line Perl script over
the entire Scwm source code (both C and Scheme)
to create a reference manual and a database of

3The user interface is written in guile-gtk, a Guile wrap-
per of the GTk+ widget toolkit [17] that integrates seam-
lessly with Scwm.

the documentation strings for the various avail-
able procedures, hooks, and variables. Addition-
ally, that script verifies numerous of the invari-
ants that the C language is not expressive enough
to enforce and reports violations to the developer.
Many bugs are eliminated via this static technique
before they are ever encountered at run-time.

3.5 Connecting to Cassowary

The most important module for our research on
advanced window layout paradigms is the wrap-
per of the Cassowary constraint solving toolkit.
To connect the constraint solver with the window
manager, the variables known to the solver must
relate to aspects of the window layout. Each appli-
cation window object contains four constrainable
variables: x, y—the offsets of the window from the
top-left corner of the virtual desktop); and width,
height—the dimensions of the window frame in
pixels. When Cassowary finds a new solution
to the set of constraints, it invokes a hook for
each constraint variable whose value it changes,
and invokes another hook after all changes have
been made. For Scwm, the constraint-variable-
changed hook adds the window that embeds that
constraint variable to its “dirty set,” and the sec-
ond hook repositions and resizes all of the windows
in the dirty set.

In each window object, the constrainable vari-
ables that correspond to the window’s position
and size actually mirror the ordinary integer vari-
ables that the rest of the application uses. The
above-described hooks copy the new values as-
signed to the constrainable variables into the or-
dinary variables. This technique avoids modifying
the vast majority of the code that manipulates
and manages windows. Bjorn Freeman-Benson
discusses these issues in greater detail [10].

To make it easy to express constraints among
windows, the constraint variables embedded in
each window are available to Scheme code via the
accessor primitives window-clv-{xl,xr,yt,yb,
width,height}, where, for example, -xl names
the x coordinate of the left side of the window and
-yb abbreviates the y coordinate of the bottom
of the window.4 Thus, to keep the tops of two
window objects aligned, we can use:

(cl-add-constraint solver
(make-cl-constraint

4For each window, explicit constraints xr = x + width

and yb = y + height are added automatically by Scwm.



Figure 3: The automatically-generated options dialog.

(window-clv-yt win1) =
(window-clv-yt win2)))

Although these primitive constraint-creation con-
structs are sufficient for specifying desired rela-
tionships, end-users need a higher-level interface
to make use of the solver in their daily activities.
The next section describes the graphical interface
we built on top of these primitives.

4 Constraints for Layout

Ordinary window managers permit only direct-
manipulation as a means of laying out their
windows. Although this technique is useful,
a constraint-based approach provides greater
dynamicism and expressiveness. In Scwm, we
use the Cassowary constraint solving toolkit
described in sections 2.3 and 3.5. On top of
the primitive equation-solving capabilities of
Cassowary, Scwm adds a graphical user interface
that employs an object-oriented design. We
specify numerous constraint classes representing
kinds of constraint relationships, and zero or more
instances of each class are added to the system for
maintaining relationships among actual windows.
The interface allows users to create constraint
objects, to manage constraint instances, and to
create new constraint classes from existing classes
by demonstration.

4.1 Applying Constraints

Applying constraints to windows is done using a
toolbar. Each constraint class in the system is rep-
resented by a button on the toolbar (figure 4). The
user applies a constraint by clicking a button, then
selecting the windows to be constrained. Alterna-

tively, the user can first highlight the windows to
be constrained and then click the appropriate but-
ton. Icons and tooltips with descriptive text assist
the user in understanding what each constraint
does. We consulted with a graphic artist on the
design of our icons in an effort to make them in-
tuitive and attractive. Preliminary user studies
have demonstrated that users can guess the repre-
sented relationship reasonably well from the icons
even without the supporting tooltip text.

We provide the following constraint classes in our
system. Most interesting relationships are either
present or can be created by combining classes in
the list.

Constant Height/Width Sum Keep the total
of the height/width of two windows con-
stant.

Horizontal/Vertical Separation Keep one
window always to the left of or above
another.

Strict Relative Position Maintain the relative
positions of two windows.

Vertical/Horizontal Maximum Size Keep
the height/width of a window below a
threshold.

Vertical/Horizontal Minimum Size Keep
the height/width of a window above a
threshold.

Vertical/Horizontal Relative Size Keep the
change in heights/widths of two windows
constant (i.e., resize them by the same
amount, together).

Vertical/Horizontal Alignment Align the
edge or center of one window along a



Figure 4: Our constraint toolbar. The text describes the constraint classes in the same order as they are
laid out in the toolbar (from left to right).

vertical/horizontal line with the edge or
center of another window.

Anchor Keep a window in place.

Some of these constraint types can constrain win-
dows in several different ways. For example, the
“Vertical Alignment” constraint can align the left
edge of one window with the right edge of another
or the right edge of one window with the middle
of another. Users specify the parameters of the re-
lationship by using window “nonants” (figure 5).
The nonant that the user clicks in dictates the part
of the window that the constraint relates. For
example, if the user selects the “Vertical Align-
ment” constraint and chooses the first window by
clicking in any of the east nonants and the second
window by clicking on its left edge, the resulting
constraint will hold the right edge of the first win-
dow in line with the left edge of the second. This
technique makes some constraint classes, such as
alignment, more generally useful. It also decreases
the number of buttons on the toolbar, which could
otherwise become unwieldy with many narrowly-
applicable constraint classes.
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Figure 5: The nine nonants of a window.

4.2 Managing Constraints

Once a constraint is applied, the user still needs
to be able to manage it. Users may wish to dis-
able the constraint temporarily or remove it en-
tirely. They may also encounter an odd behavior
while they are moving or resizing a window and
want to discover which constraint(s) caused the
unexpected result. They may simply be curious
to know what constraints are applied to a given
window and how that window will interact with

other windows. Our constraint investigation in-
terface allows for all of these kinds of interactions.

The primary means of inspecting constraints is
through visual representations superimposed di-
rectly on the windows that the relationship in-
volves (figure 6). When the mouse pointer hovers
over a constraint in the investigator, the repre-
sentation of that constraint is drawn. This hint
makes it easy for the user to make the correct as-
sociations between windows and constraints. Each
constraint class also defines its own visual repre-
sentation, which in most cases closely matches the
icon in the toolbar.

The constraint investigation window also allows
the user to enable and disable one or all con-
straints via a checkbox and to remove a con-
straints via a delete button. The constraint inves-
tigator can be kept on-screen at all times and dy-
namically updates as constraints are applied and
removed. Together with the visual representation
system, the investigation window makes it easy to
manipulate constraints.

Enabling or disabling constraints can result in
global rearrangements of windows and large
changes in position. To make these discontinu-
ities less confusing, we animate windows fluidly
from their old positions and sizes to their new
configuration. The animations borrow features
from the Self programming environment that
mimic cartoon-style animation [6].

4.3 Constraint abstractions

A problem with the interface as described thus far
is that the basic constraint classes, such as “Verti-
cal Alignment” and “Horizontal Separation,” are
not always sufficient to convey a user’s intention
fully. Our own use showed that often one needs
to combine several constraints to obtain the de-
sired behavior. A good example of this situation
is tiling (figure 7), where two or more windows
are aligned next to each other such that they ap-
pear to become a window unit of their own. A
tiling configuration for two windows can take from
three to five constraints to implement. Adding the



Figure 6: Visual representation of constraints. XTerm A is constrained to be to the left of XTerm B,
and above XTerm C. Additionally, XTerm C is required to have a minimum width, and the XEmacs
window’s southeast corner is anchored at its current location. The constraint investigator that allows
users to manage the constraints instances appears in the bottom left of the screen shot.

constraints can become tedious when tiling many
windows, or when repeatedly tiling and untiling
two windows. Certainly a “tiled windows” con-
straint class could be hard-coded into the system,
but that just postpones the problem—some means
of abstracting relationships must be provided to
the end user.

Our solution to this problem was to create con-
straint “compositions.” A composition is created
by a simple programming by demonstration tech-
nique. We record the user applying a constraint
arrangement to some windows in their workspace.
The constraints used and the relationships created
among the windows are saved into a new con-
straint class object. This class object appears in
the toolbar like all other constraint classes. Click-
ing the button in the toolbar will prompt the user
to select a number of windows equal to that used
in the recording. The constraints will then be ap-

Figure 7: Four windows tiled together. Unlike
tiled-only window managers, Scwm permits users
to simply tile a subset of their windows; other win-
dows could overlap arbitrarily.



plied in the same order as before. Compositions
allow users to accumulate a collection of often-
used constraint configurations that can then be
easily applied.

4.4 Inferring Constraints

Our toolbar-based user interface allows flexible re-
lationships to be specified, but many common user
desires reflect very simple constraints. For exam-
ple, users may place a window directly adjacent
to another window and want them to stay to-
gether. Some windowing systems provide a basic
“snapping” behaviour that recognizes when a user
puts a window nearly exactly adjacent to another
window and then adjusts the window coordinates
slightly to have them snap together precisely.

One useful extension to basic snapping is “aug-
mented snapping” [14]. Using this technique, the
user has the option of transforming a snapped-to
relationship to a persistent constraint that is then
maintained during subsequent manipulations.
Scwm supports this augmented snapping via a
simple extension to its basic snapping module.
When a snap is performed, instead of simply
moving the window, the appropriate constraint
object is created and added to the system. Such
inferred constraints can be manipulated via the
constraint investigator described earlier. They
also can be removed by simply “ripping-apart”
the windows by holding down the Meta modifier
key while using direct manipulation to move them
apart.

5 Related Work

There is considerable early work on windowing
systems [15, 16, 26, 25, 27, 23]. Many of these
projects addressed lower-level concerns that a con-
temporary X/11 window manager can ignore. An
issue that does remain is tiled vs. overlapping win-
dows. Scwm, like nearly all windowing inter-
faces of the 1990s, chooses overlapping windows
for their generality and flexibility. However, un-
like other systems, Scwm’s constraint solver can
permit arbitrary sets of windows to be maintained
in a tiled format of a given size.

Although there are literally dozens of modern
window managers in common use on the X
windowing platform, only two (besides fvwm2) are
especially related to Scwm. gwm, the Generic
Window Manager, embeds a quirky dialect of
Lisp called “wool” for Window Object Oriented

Language [30]. It supported programmability,
and some of its packages, such as directional focus
changing, inspired similar modules in Scwm.
Sawmill [19] is a new window manager with an
architecture similar to gwm and Scwm. Like
gwm, it embeds its own unique dialect of Lisp
(called “rep”). Both embrace the extensibility
language architecture and provide low level
primitives, then implement other features in their
extension language. However, the embedded Lisp
dialects used by gwm and Sawmill both suffer
from the lack of lexical closures that Scheme
provides Scwm. Neither gwm nor Sawmill has
any constraint capabilities, though the hooks they
provide can permit procedural implementations to
approximate some of the simpler constraint-based
behaviours that Scwm implements.

Various other scripting languages exist. As men-
tioned previously, GNU Emacs and its Emacs Lisp
is most similar to Scwm in philosophy, prompting
Scwm to be dubbed “the Emacs of Window Man-
agers” by its users. The earliest popular general-
purpose scripting languages is Tcl, the tool com-
mand language [34]. John Ousterhout, Tcl’s au-
thor, makes a compelling case for the advantages
of scripting [33]. Tcl is an incredibly simple but
under-powered language. Subsequent similar lan-
guages include Python [22] and Perl [41]; both are
far more feature-full languages than Tcl, but all
three are more commonly used for scripting where
the main control resides with the language. Scwm
and Emacs both exploit their languages for em-
bedding and invoke scripting code in response to
events dispatched by C code.

There are also several other Scheme-based ex-
tension languages. Elk [9] is an early Scheme
intended as an extension language but is no
longer well supported. siod (Scheme In One
Defun) [38] is an especially compact implemen-
tation of Scheme that in return compromises
completeness and standards-compliance; it is
embedded in the popular gimp (GNU Image Ma-
nipulation Program) application [13] to support
user-programmable transformations on images.

Numerous other application domains have used
constraint solvers. Early work includes the draw-
ing tool Sketchpad [40] and the simulation labora-
tory ThingLab [5]. Many other drawing programs
have embedded constraint solvers over the years
including Juno [31], Juno-2 [21], Unidraw [20], and
Penguin [7]. Unidraw and Penguin both leverage
QOCA, a constraint solver that (like Cassowary)



is able to maintain arbitrary linear arithmetic con-
straints [24]. Scwm includes more than just con-
straints in its support for intelligent window lay-
out; another paper describes some of its other lay-
out capabilities [3].

Web browser layout presents challenges similar to
window layout. Our “Constraint Cascading Style
Sheets” work also embeds Cassowary and exposes
a declarative specification language to web au-
thors for describing page layout [2]. Widget layout
in user interfaces is yet another two-dimensional
layout problem. Amulet [29] and the earlier Gar-
net [28] both provided constraint solvers based
on simple local propagation techniques. These
solvers suffer from an inability to handle inequal-
ities and simultaneous equations, which unfortu-
nately arise all too often in the natural declarative
specification of layout desires.

6 Conclusions and Future Work

One of the most useful aspects of this research
has been the continuous feedback from our end
users throughout the development of Scwm. Since
1997, we have made the latest version of Scwm
(along with all of its source code) available on the
Internet, and have actively solicited feedback on
our support mailing lists. Many of the high-level
layout features were developed in response to real-
world frustrations and annoyances experienced ei-
ther by the authors or by our user community.
Although cultivating that community has taken
time and effort, we feel that the benefits from user
feedback outweigh the costs.

Two years ago when we first began the Scwm
project, fvwm2 was a good choice as a starting
point for a new window manager. Since then,
though, several other window managers have ma-
tured and are far more feature-full than fvwm2.
Most notably, Enlightenment [18] and Window-
Maker [42] are popular powerful window managers
that might prove useful as a starting point for a
new version of Scwm.

Perhaps the most significant implementation issue
for Scwm is its startup time of nearly 20 seconds
on a Pentium III 450 class machine. Loading the
nearly 20,000 lines of Scheme code at every restart
is costly, and wasteful. Ideally, we could add an
Emacs-like “unexecing” capability to dump the
state of a Scwm process that has all of the ba-
sic modules loaded. Although this will increase

the size of the executable, it will also substan-
tially reduce startup delays. Fortunately, after
startup, Scwm’s performance is indistinguishable
from other window managers that are written en-
tirely in C.

Another rich area for future work involves our con-
straint interface. Currently, we only supports con-
straints among windows. It seems useful to per-
mit the addition of “guide-line” and “guide-point”
elements and allow windows to be constrained rel-
ative to them. These could, for example, be used
to ensure that a window stays in the current view-
port, or stays in a specific region of the display. It
would also be intriguing to investigate the pos-
sibility of ghost-frame objects that are controlled
exclusively by Scwm. These window frames could
then hold real application windows by dragging
them into the frame. This feature would permit
hierarchically organizing windows, while still al-
lowing full access to the constraint solver for non-
hierarchical relationships.

We are also considering extending our voice-based
interface to permit specifying constraints. In
Scwm, a user can center a window simply by
saying aloud “Center current window.” The
voice recognition interface to window layout
and control encourages the user to express
higher level intention: it is far more awkward
to say “move window to 379, 522” than it is
to say “move window next to Emacs.” In this
way, the voice interface usefully contrasts with
direct manipulation where exact coordinates
naturally result from the interaction technique.
Additionally, voice-based interactions may prove
especially valuable for disabled users for whom
direct manipulation is difficult.

Discerning a user’s true intention is an interest-
ing complexity of the declarative specification of
our current constraints interface. Consider a user
who is manipulating three windows, A, B, and C.
Suppose the user constrains A to be to the left of
B, and B to the left of C. Now suppose the ap-
plication displaying in window B terminates, thus
removing that window. Should window A still be
constrained to be to the left of window C? In
other words, should the transitive constraint that
was implicit through window B be preserved? The
answer depends on the user’s underlying desire.
Providing higher-level abstractions for commonly-
desired situations may alleviate this ambiguity.
For example, if the user had pressed a button to
keep three windows horizontally non-overlapping



in a row, it is clear that window B’s disappearance
should not remove the constraint that window A
remain to the left of C.

Finally, we are especially interested in combining
our work with constraints and the web [2] with
this work on window layout. Web, window, and
widget layout are all fundamentally related and
their similarities should ideally be factored out
into a unifying framework so that advances made
in any area benefit all kinds of flexible, dynamic
two-dimensional layout.

Acknowledgments

We thank Maciej Stachowiak, Sam Steingold,
Robert Bihlmeyer, and Todd Larason for their
contributions to the Scwm project. This research
has been funded in part by both a National Sci-
ence Foundation Graduate Research Fellowship
and the University of Washington Computer
Science and Engineering Wilma Bradley fellow-
ship for Greg Badros, and in part by NSF Grant
No. IIS-9975990.

Availability

Scwm is freely available; see http://scwm.mit.edu.
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able free for research purposes; see http://www.cs.
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