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ABSTRACT

We desired a platform for researching advanced win-
dow layout paradigms including the use of constraints.
Typical window management systems are written en-
tirely in C or C++, complicating extensibility and pro-
grammability. Because no existing window manager was
well-suited to our goal, we developed the Scwm window
manager. In Scwm, only the core window-management
primitives are written in C while the rest of the package
is implemented in its Guile/Scheme extension language.
This architecture, first seen in Emacs, enables program-
ming substantial new features in Scheme and provides a
solid infrastructure for constraint-based window layout
research and other advanced capabilities such as voice
recognition. We have used Scwm to implement an in-
terface to the Cassowary constraint solving toolkit to
permit end users to declaratively specify relationships
among window positions and sizes. The window man-
ager dynamically maintains those constraints and lets
users view and modify them. Scwm succeeds in pro-
viding an excellent implementation framework for our
research and is practical enough that we rely on it ev-
eryday.

KEYWORDS: constraints, Cassowary toolkit, Scheme,
Scwm, X/11 Window Manager

INTRODUCTION

We desired a platform for researching advanced window
layout paradigms including the use of constraints. Typi-
cal window management applications for the X windows
system are written entirely in a low-level systems lan-
guage such as C or C++. Because the X windows li-
braries have a native C interface, using C is justified.
However, a low-level language is far from ideal when
prototyping implementations of sophisticated window
manager functionality. For our purposes, a higher-level
language is much more appropriate, powerful, and sat-
isfying.

Using C to implement a highly-interactive application
also complicates extensibility and customizability. To
add a new feature, the user likely must write C code,
recompile, relink, and restart the application before
changes are finally available for testing and use. This
development cycle is especially problematic for software
such as a window manager that generally is expected to
run for weeks at a time. Additionally, maintaining all
the features that any user desires would result in terrible
code bloat.

An increasingly popular solution to these problems is
the use of a scripting language on top of a core system
that defines new domain-specific primitives. A prime
example of this architecture is Richard Stallman’s GNU
Emacs text editor [40]. In the twenty years since the
introduction of Emacs, numerous extensible scripting
languages have evolved including Tcl [34], Python [22],
Perl [42], and Guile [12, 37]. Each of the first three
languages was designed from scratch with scripting in
mind. In contrast, Guile—the GNU Ubiquitous Intelli-
gent Language for Extension—takes a pre-existing lan-
guage, Scheme, and adapts it for use as an extension
language.

We are exploring constraint-based window layout
paradigms and their user interfaces. Because we are
most interested in practical use of constraints, we
decided to target the X windows system and build
a complete window manager for X/11. We chose to
use Guile/Scheme as the extension language for our
project that we named Scwm—the Scheme Constraints
Window Manager. The most notable feature of Scwm
is constraint-based layout. Whereas typical window
management systems use only direct manipulation [38]
of windows, Scwm also supports a user-interface for
specifying constraints among windows that it then
maintains using our Cassowary Constraint solving
toolkit [1]. Much of the advanced functionality of
Scwm is implemented in Scheme, thus exploiting the



embedded-extension-language architecture.

BACKGROUND

Scwm leverages numerous existing technologies to pro-
vide its infrastructure and support its advanced capa-
bilities.

X Windows and fvwm2

A fundamental design decision for the X windows sys-
tem [33] was to permit an arbitrary user-level program
to manage the various application windows. This open
architecture permits great flexibility in the way windows
look and behave.

X window managers are complex applications. They
are responsible for decorating top-level application win-
dows (e.g., drawing labelled titlebars), permitting resiz-
ing and moving of windows, iconifying, tiling, cascading
windows, and much more. Many Xlib library functions
wrapping the X protocol are specific to the special needs
of window managers. Because our goal is to do interest-
ing research beyond that of modern window managers,
we used an existing popular window manager, fvwm2, as
our starting point [13]. In 1997 when the first author be-
gan the Scwm project with Maciej Stachowiak, fvwm2
was arguably the most used window manager in the X
windows community. It supports flexible configuration
capabilities via a per-user .fvwm2rc file that is loaded
once when fvwm2 starts. To tweak parameters, end-
users edit their .fvwm2rc files using an ordinary text
editor, save the changes, then restart the window man-
ager to activate the changes. The fvwm2 configuration
language supports a very restricted form of functional
abstraction, but lacks loops and conditionals.

Despite these shortcomings, fvwm2 provides a good
amount of control over the look of windows. It also has
evolved over the years to meet complex specifications
(e.g., the Interclient Communication Conventions
Manual [36]) and to deal with innumerable quirks
of applications. By our basing Scwm on fvwm2, we
leveraged those capabilities and ensured that Scwm
was at least as well-behaved as fvwm2. Our fundamental
change to fvwm2 was to replace its ad-hoc configuration
language with Guile/Scheme [12].

Scheme for Extensibility

Guile [12] is the GNU project’s R4RS-compliant Scheme
[9] system designed specifically for use as an embedded
interpreter. Scheme is a very simple, elegant dialect of
the long-popular Lisp programming language. It is easy
to learn and provides exceptionally powerful abstraction
capabilities including higher-order functions, lexically-
scoped closures and a hygienic macro system. Guile ex-
tends the standard Scheme language with a module sys-
tem and numerous wrappers for system libraries (e.g.,
POSIX file operations).

Embedded Constraint Solver
Cassowary is a constraint solving toolkit that includes
support for arbitrary linear equalities and inequali-
ties [1]. Constraints may have varying strengths, and
constraint hierarchy theory [6] defines what constitutes
a correct solution. We implemented the Cassowary
toolkit in C++, Java, and Smalltalk, and created a
wrapper of the C++ implementation for Guile/Scheme.
Thus, it is straightforward to use the constraint solver
in a broad range of target applications.

In addition, the Cassowary toolkit permits numerous
hooks for extension. Each constraint variable has an
optional attached object, and the constraint solver can
be instructed to invoke a callback upon changing the
value assigned to any variable and also upon completion
of the re-solve phase (i.e., after all variable assignments
are completed). Scwm exploits these facilities to isolate
the impact of the constraint solver on existing code.

CONSTRAINTS FOR LAYOUT
Ordinary window managers permit only direct-manip-
ulation as a means of laying out their windows. Al-
though this technique is useful, a constraint-based ap-
proach provides a more dynamic and expressive system.
In Scwm, we use the Cassowary constraint solving tool-
kit. On top of the primitive equation-solving capabilities
of Cassowary, Scwm adds a graphical user interface that
employs an object-oriented design. We specify numer-
ous constraint classes representing kinds of constraint
relationships, and instances of each class are added to
the system for maintaining relationships among actual
windows. The interface allows users to create constraint
objects, to manage constraint instances, and to create
new constraint classes from existing classes by demon-
stration.

Applying Constraints
Applying constraints to windows is done using a tool-
bar. Each constraint class in the system is represented
by a button on the toolbar (figure 1). The user ap-
plies a constraint by clicking a button, then selecting
the windows to be constrained. Alternatively, the user
can first highlight the windows to be constrained and
then click the appropriate button. Icons and tooltips
with descriptive text assist the user in understanding
what each constraint does. We consulted with a graphic
artist on the design of our icons in an effort to make
them intuitive and attractive. Preliminary user studies
have demonstrated that users can determine the repre-
sented relationship reasonably well from the icons even
without the supporting tooltip text.

We provide the following constraint classes in our sys-
tem. Many interesting relationships are either present
or can be created by combining classes in the list.

Constant Height/Width Sum Keep the total of the
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Figure 1: Our constraint toolbar. The text describes the constraint classes in the same order as they are laid out in the
toolbar (from left to right).

height/width of two windows constant.

Horizontal/Vertical Separation Keep one window
always to the left of or above another.

Strict Relative Position Maintain the relative posi-
tions of two windows.

Vertical/Horizontal Maximum Size Keep height/
width of a window below a threshold.

Vertical/Horizontal Minimum Size Keep height/
width of a window above a threshold.

Vertical/Horizontal Relative Size Keep the
change in heights/widths of two windows constant
(i.e., resize them by the same amount, together).

Vertical/Horizontal Alignment Align the edge or
center of one window along a vertical/horizontal line
with the edge or center of another window.

Anchor Keep a window in place.

Some of these constraint types can constrain windows
in several different ways. For example, the “Vertical
Alignment” constraint can align the left edge of one win-
dow with the right edge of another or the right edge of
one window with the middle of another. Users spec-
ify the parameters of the relationship by using window
“nonants,” the ninefold analogue of quadrants (figure 2).
The nonant that the user clicks in dictates the part of
the window to which the constraint applies. For ex-
ample, if the user selects the “Vertical Alignment” con-
straint and chooses the first window by clicking in any of
the east nonants, and the second window by clicking on
its left edge, the resulting constraint will align the right
edge of the first window with the left edge of the second.
This technique makes some constraint classes, such as
alignment, more generally useful. It also decreases the
number of buttons on the toolbar, which could other-
wise become unwieldy with many narrowly-applicable
constraint classes.

Managing Constraints
Once a constraint is applied, the user still needs to be
able to manage it. Users may wish to disable the con-
straint temporarily or remove it entirely. They may en-
counter an odd behavior while they are moving or resiz-
ing a window and want to discover which constraint(s)
caused the unexpected result, they may simply be cu-
rious to know what constraints are applied to a given
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Figure 2: The nine nonants of a window.

window and how that window will interact with other
windows. Our constraint investigation interface allows
for all of these kinds of interactions.

The constraint investigation window allows the user to
enable or disable constraints using checkboxes, and to
remove constraints using a delete button. The window
is dynamically updated as constraints are applied and
removed, and changes made in the investigator are im-
mediately reflected in the layout of windows.

When the user moves her mouse pointer over a con-
straint in the investigator, the representation of that
constraint is drawn directly on the windows related by
the constraint (figure 3). This hint makes it easy for
the user to make the correct associations between win-
dows and constraints. Each constraint class defines its
own visual representation, which in most cases closely
matches the icon in the toolbar.

Enabling or disabling constraints can result in global
rearrangements of windows and large changes in posi-
tion. To make these discontinuities less confusing, we
animate windows fluidly from their old positions and
sizes to their new configuration. The animations bor-
row features from the Self programming environment
that mimic cartoon-style animation [7].

Constraint abstractions

A problem with the interface as described thus far is
that the basic constraint classes, such as “Vertical Align-
ment” and “Horizontal Separation,” are not always suf-
ficient to convey a user’s intention fully. Our own use
showed that often one needs to combine several con-
straints to obtain the desired behavior. A good example
of this situation is tiling (figure 4), where two or more
windows are aligned next to each other such that they
appear to become a window unit of their own. A tiling
configuration for two windows can take from three to
five constraints to implement. Adding the constraints is
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Figure 3: Visual representation of constraints. XTerm A is constrained to be to the left of XTerm B, and above XTerm C.
Additionally, XTerm C is required to have a minimum width, and the XEmacs window’s southeast corner is anchored at its
current location. The constraint investigator that allows users to manage the constraints instances appears in the bottom
left of the screen shot.

tedious when tiling many windows, or when repeatedly
tiling and untiling two windows. Certainly a “tiled win-
dows” constraint class could be hard-coded into the sys-
tem, but that just postpones the problem—some means
of abstracting relationships should be provided to the
end user.

Figure 4: Four windows tiled together. Unlike tiled-
only window managers, Scwm permits users to tile a
subset of their windows; other windows could overlap
arbitrarily.

Our solution to this problem is to support constraint
“compositions.” A composition is created using a simple
programming-by-demonstration technique. We record

the user applying a constraint arrangement to some win-
dows in the workspace. The constraints used and the
relationships created among the windows are saved into
a new constraint class object, which then appears in the
toolbar like all other constraint classes. Clicking the
button in the toolbar will prompt the user to select a
number of windows equal to that used in the recording.
The constraints will then be applied in the same order
as before. Compositions allow users to accumulate a col-
lection of often-used constraint configurations that can
then be easily applied.

Inferring Constraints

Our toolbar-based user interface allows flexible relation-
ships to be specified, but many common user desires
reflect very simple constraints. For example, users may
place a window directly adjacent to another window and
want them to stay together. Some windowing systems
provide a basic “snapping” behaviour that recognizes
when a user puts a window nearly exactly adjacent to
another window and then adjusts the window coordi-
nates slightly to have them snap together precisely.

In Scwm, we support a useful extension to basic snap-
ping called “augmented snapping” [15]. Using this
technique, the user has the option of transforming a
snapped-to relationship to a persistent constraint that
is then maintained during subsequent manipulations.
When a snap is performed, instead of simply moving
the window, the appropriate constraint object is created
and added to the system. Such inferred constraints can
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be manipulated via the constraint investigator described
earlier. They also can be removed by simply “ripping-
apart” the windows by holding down the Meta modifier
key while using direct manipulation to move them apart.

USABILITY STUDY
We applied a discount usability approach [32] to improve
our constraint interface to managing windows.

Methodology
Six advanced computer users thought aloud while per-
forming three tasks. Each task consists of two parts:
discovery and re-creation. First, users manipulate win-
dows with constraints already active to discover and de-
scribe those relationships (without use of the constraint
investigator). After giving a correct description, they
then use the interface on a second display to constrain a
fresh set of windows identically. Users were given only
a very minimal description of the interface.

The three constraint configurations tested were: 1) a
Netscape Find dialog kept in the upper right corner of
the main browser window; 2) three windows kept right-
aligned along the edge of the screen such that none of
the windows overlap nor leaves the top or bottom of the
screen; and 3) two windows tiled horizontally.

Results
All users were able to complete their tasks. Discovering
the constraints was straightforward—manipulating the
windows and observing the behaviour was sufficient to
deduce the relationships already present. Re-creating
the configurations was more troublesome, but users still
succeeded. They often used the investigator to remove
incorrect constraints, but then continued onward with
an alternate hypothesis.

Problems discovered
Our study uncovered numerous usability issues. The
most substantial problem involved selecting window
parts for the alignment constraints. When performing
a vertical alignment, all that matters is whether the
user clicks on the left, center, or right third of the
window—it is irrelevant whether the click is in the
top, middle, or bottom of the window. Our interface,
however, still highlighted individual corners or edges
as it does for anchor constraints where any of the nine
positions is significant. Users were confused by the UI
distinguishing along the irrelevant vertical dimension.
We revised Scwm to highlight whole edges of windows
when applying an alignment constraint.

When users began adding a constraint and wanted to
cancel, they were unsure of how to abort their action.
Some users clicked on the toolbar thinking that is a
special window. Others discovered that clicking on the
background results in an error that terminates the op-
eration. No user realized that a right-click aborts and
we now also support pressing the Escape key to cancel

SCWM_PROC( X_property_get,

"X-property-get",

2, 1, 0,

(SCM win, SCM name, SCM consume_p))

/** Get X property NAME of window WIN. */

#define FUNC_NAME s_X_property_get

{

SCM answer;

VALIDARG_WIN_ROOTSYM_OR_NUM_COPY(1,win,w);

VALIDARG_STRING_COPY(2,name,aprop);

VALIDARG_BOOL_COPY_USE_F(3,consume_p,del);

...

XGetWindowProperty(...);

... answer = ...;

return answer;

}

#undef FUNC_NAME

Figure 5: An example Scwm primitive.

a window selection.

Other observations
The users who performed best studied the tooltip help
for each of the toolbar buttons before attempting their
first re-creation sub-task. We were surprised at the va-
riety of constraints used in re-creating our configura-
tions: no user matched the expected solution on all three
tasks. In particular, the “strict relative position” con-
straint was used especially advantageously by users who
chose to configure windows manually before applying
constraints to keep the windows as they were.

Not all users discovered the constraint-visualization fea-
ture of the investigator. We now draw the visualizations
whenever the user points at any part of the description,
not just the enable checkbox. Also, one user wanted to
modify the parameters of a constraint in the investigator
window directly.

THE SYSTEM
Scwm is a complex software system that emphasizes ex-
tensibility and customizability to enable sophisticated
capabilities to be developed and tested quickly and eas-
ily.

The current implementation of Scwm contains roughly
32,500 non-comment, non-blank lines of C code, 800
lines of C++ code, and 25,000 lines of Scheme code.
The Guile/Scheme system is about 44,000 lines of C
code and 11,500 lines of Scheme code. Finally, the Cas-
sowary constraint solving toolkit is about 9,500 lines of
C++ code in its core, plus about 1,400 lines of C++
code in the Guile wrapper. The following subsections
describe various technical aspects of the implementation
of Scwm in greater detail.

Basic philosophy
Our first version of Scwm was a simple derivative of its
predecessor, fvwm2, with the ad-hoc configuration lan-
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(define*-public (window-class

#&optional (win (get-window)))

"Return the class of window WIN."

(X-property-get win "WM_CLASS"))

Figure 6: The “window-class” procedure.

guage replaced by Guile/Scheme. Like fvwm2, Scwm
reads a startup file containing all of the commands to
initialize the settings of various options. Most fvwm2
commands have reasonably straightforward translations
to Scwm sentential expressions. For example, these
fvwm2 configuration lines:

Style "*" ForeColor black
Style "*" BackColor grey76

HilightColor white navyblue

AddToFunc Raise-and-Stick
+ "I" Raise
+ "I" Stick

Key s WT CSM Function Raise-and-Stick

are rewritten for Scwm in Guile/Scheme as:1

(window-style "*" #:fg "black"
#:bg "grey76")

(set-highlight-foreground! "white")
(set-highlight-background! "navyblue")

(define* (raise-and-stick
#&optional (win (get-window)))

(raise-window win)
(stick win))

(bind-key ’(window title) "C-S-M-s"
raise-and-stick)

The simpler and more regular syntax is convenient for
the end user. An even greater advantage of using a real
programming language instead of a static configuration
language stems from the ability to extend the set of
commands (either by writing C or Scheme code) and to
combine those new procedures arbitrarily.

Adding a new Scwm primitive is easily done by writing
a new C function that registers itself with the Guile
interpreter. For example, after using C to add the
“X-property-get” primitive (figure 5), we can write a
new procedure to report a window’s class, which is just

1Because the fvwm2 configuration language is so limited, it is
possible to mechanically convert to Scwm commands; we provide
a reasonably-complete automated translator for this purpose.

the value of its WM CLASS property (figure 6). Then we
can use that procedure interactively by writing:

(bind-key ’all "C-S-M-f"
(lambda ()
(let* ((win (window-with-focus))

(class (window-class win)))
(if (string=? class "Emacs")

(resize-window 500 700 win)
(resize-window 400 300 win)))))

The above expressions, when evaluated in Scwm’s inter-
preter, will make the user’s “Control + Shift + Meta
+ f” keystroke resize the window to either 500 × 700
pixels if the currently-focused window is an Emacs ap-
plication window, or 400 × 300 pixels otherwise.

Scwm’s extensible architecture also allows Guile exten-
sions to be accessible from the window manager. Via
standard Guile modules, Scwm can read and parse
web pages, download files via ftp, do regular expression
matching, and much more. In fact, nearly all of the user-
interface elements in Scwm are built using guile-gtk,
a Guile wrapper of the GTk+ toolkit.

Binary Modules
Because each user only needs a subset of the full func-
tionality that Scwm provides, it is important that users
only pay for the features they require (in terms of size
of the process image). Guile, unlike Emacs Lisp, allows
new primitives to be defined by dynamically-loadable
binary modules. Without this feature, all primitives
would need to be contained in the Scwm core, thus com-
plicating the source code and increasing the size of the
resulting monolithic system.

The voice recognition module based on IBM’s
ViaVoicetm software illustrates the benefits of dynam-
ically-loaded extensions. Those users who do not
to use that feature—perhaps because the library is
not available on their platform or perhaps because
they have no audio input device—will never have the
module’s code loaded.

Implementing the module was also straightforward. Af-
ter getting a sample program from IBM’s ViaVoicetm

voice recognition engine working, it required less than
six hours of development effort to wrap the core func-
tionality of the engine with a Scheme interface. A gram-
mar describes the various utterances that Scwm under-
stands, and the C code asynchronously invokes a Scheme
procedure when a phrase is recognized. Because those
action procedures are written in Scheme, the responses
to phrases can be easily modified and extended without
even restarting Scwm.

Graphical configuration
Another example of the extensibility that Guile pro-
vides Scwm is the preferences system for graphical

6



customization. Novice Scwm users are unlikely to want
to write Scheme code to configure the basic settings of
their window manager, such as the background color of
the currently-active window’s titlebar. A graphical user
interface is necessary to manage these settings, but there
are potentially a huge number of configurable parame-
ters. Undisciplined maintenance of a user interface for
those options would be tedious and error-prone.

Fortunately, Scwm can leverage its Scheme extension
language to ease these difficulties. The defoption mod-
ule provides a macro define-scwm-option that per-
mits declarative specification of a configuration option.2

To expose a graphical interface to the *highlight-
background* configuration variable, the Scwm devel-
oper need simply write:

(define-scwm-option

*highlight-background* "navy"

"The bg color for focused window."

#:type ’color

#:group ’face

#:setter (lambda (v)

(set-highlight-background! v))

#:getter (lambda () (highlight-background)))

This code states that *highlight-background* is an
end user configurable variable that will contain a value
that is a color. It also specifies that the variable can be
grouped with other variables into a face category. Fi-
nally, setter and getter procedures are specified to teach
Scwm how to alter and retrieve the value.

The preferences module then accumulates all of these
specifications and dynamically generates the user inter-
face shown in figure 7.3 This modular approach also en-
forces the separation of the visual appearance from the
desired functionality—a visually-distinct notebook-style
interface with the same functionality is also available.

Connecting to Cassowary
The most important module for our research on ad-
vanced window layout paradigms is the wrapper of the
Cassowary constraint solving toolkit. To connect the
constraint solver with the window manager, the vari-
ables known to the solver must relate to aspects of the
window layout. Each application window object con-
tains four constrainable variables: x, y—the offsets of
the window from the top-left corner of the virtual desk-
top); and width, height—the dimensions of the window
frame in pixels. When Cassowary finds a new solution

2Recent versions of Emacs [40] provide a similar feature in
their “customize” package. The layout of their user-interfaces is
simpler, though, as no attempt is made to create a fully graphical
interface.

3The user interface is written in guile-gtk, a Guile wrapper
of the GTk+ widget toolkit [18] that integrates seamlessly with
Scwm.

to the set of constraints, it invokes a hook for each con-
straint variable whose value it changes, and invokes an-
other hook after all changes have been made. For Scwm,
the constraint-variable-changed hook adds the window
that embeds that constraint variable to its “dirty set,”
and the second hook repositions and resizes all of the
windows in the dirty set.

In each window object, the constrainable variables that
correspond to the window’s position and size mirror the
ordinary integer variables that the rest of the applica-
tion uses. The hooks copy the new values assigned to
the constrainable variables into the ordinary variables.
This technique avoids modifying the vast majority of the
code that manipulates and manages windows. (Bjorn
Freeman-Benson discusses these issues in greater de-
tail [11].)

To make it easy for developers to express constraints
among windows, the constraint variables embedded
in each window are available to Scheme code via
the accessor primitives window-clv-{xl,xr,yt,yb,
width,height}, where, for example, -xl names the
x coordinate of the left side of the window and -yb
abbreviates the y coordinate of the bottom of the
window.4 Thus, to keep the tops of two window objects
aligned, we can use:

(cl-add-constraint solver
(make-cl-constraint

(window-clv-yt win1) =
(window-clv-yt win2)))

RELATED WORK
There is considerable early work on windowing sys-
tems [16, 17, 26, 25, 27, 23]. Many of these projects ad-
dressed lower-level concerns that a contemporary X/11
window manager can ignore. An issue that does remain
is tiled vs. overlapping windows. Scwm, like nearly all
windowing interfaces of the 1990s, chooses overlapping
windows for their generality and flexibility. However,
unlike other systems, Scwm’s constraint solver can per-
mit arbitrary sets of windows to be maintained in a tiled
format of a given size.

Although there are literally dozens of modern window
managers in common use on the X windowing platform,
only two (besides fvwm2) are especially related to Scwm.
gwm, the Generic Window Manager, embeds a quirky
dialect of Lisp called “wool” for Window Object Ori-
ented Language [30]. It supports programmability, and
some of its packages, such as directional focus chang-
ing, inspired similar modules in Scwm. Sawfish [19]
is a more recent window manager with an architecture
similar to gwm and Scwm. Like gwm, it embeds its

4For each window, explicit constraints xr = x + width and yb

= y + height are added automatically by Scwm.
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Figure 7: The automatically-generated options dialog.

own unique dialect of Lisp (called “rep”). Both em-
brace the extensibility language architecture and pro-
vide low level primitives, then implement other features
in their extension language. However, the embedded
Lisp dialects used by gwm and Sawfish both suffer from
the lack of lexical closures that Scheme provides Scwm.
Neither gwm nor Sawfish has any constraint capabili-
ties, though the hooks they provide can permit procedu-
ral implementations to approximate some of the simpler
constraint-based behaviours that Scwm implements.

Various other scripting languages exist. As mentioned
previously, GNU Emacs and its Emacs Lisp is similar
to Scwm in philosophy. The earliest popular general-
purpose scripting languages is Tcl, the tool command
language [34]. John Ousterhout, Tcl’s author, makes a
compelling case for the advantages of scripting [35]. Tcl
is an incredibly simple but under-powered language that
only in the most recent versions includes real data struc-
tures. Subsequent similar languages include Python [22]
and Perl [42]; both are far more feature-full languages
than Tcl, but all three are more commonly used for
scripting where the main control resides with the lan-
guage. Scwm and Emacs both exploit their languages
for embedding and invoke scripting code in response to
events dispatched by C code.

There are also several other Scheme-based extension lan-
guages. Elk [10] is an early Scheme intended as an ex-
tension language but is no longer well supported. siod
(Scheme In One Defun) [39] is an especially compact
implementation of Scheme that in return compromises
completeness and standards-compliance; it is embedded
in the popular gimp (GNU Image Manipulation Pro-
gram) application [14] to support user-programmable
transformations on images.

Numerous other application domains have used con-
straint solvers. Early work includes the drawing
tool Sketchpad [41] and the simulation laboratory
ThingLab [5]. Many other drawing programs have
embedded constraint solvers over the years including
Juno [31], Juno-2 [21], Unidraw [20], and Penguin [8].
Unidraw and Penguin both leverage QOCA, a con-

straint solver that (like Cassowary) is able to maintain
arbitrary linear arithmetic constraints [24]. Scwm
includes more than just constraints in its support for
intelligent window layout; another paper describes some
of its other layout capabilities [3].

Web browser layout presents challenges similar to win-
dow layout. Our “Constraint Cascading Style Sheets”
work also embeds Cassowary and exposes a declara-
tive specification language to web authors for describing
page layout [2]. Widget layout in user interfaces is yet
another two-dimensional layout problem. Amulet [29]
and the earlier Garnet [28] both provided constraint
solvers based on simple local propagation techniques.
These solvers suffer from an inability to handle inequal-
ities and simultaneous equations, which unfortunately
arise all too often in the natural declarative specifica-
tion of layout desires.

CONCLUSIONS AND FUTURE WORK

One of the most useful aspects of this research has been
the continuous feedback from our end users throughout
the development of Scwm. Since 1997, we have made
the latest version of Scwm (along with all of its source
code) available on the Internet, and have actively so-
licited feedback on our support mailing lists. Many of
the high-level layout features were developed in response
to real-world frustrations and annoyances experienced
either by the authors or by our user community. Al-
though cultivating that community has taken time and
effort, we feel that the benefits from user feedback out-
weigh the costs.

Perhaps the most significant implementation issue for
Scwm is its startup time of nearly 20 seconds on a Pen-
tium III 450 class machine. Loading the nearly 20,000
lines of Scheme code at every restart is costly, and waste-
ful. To address this, we should add an Emacs-like “un-
execing” capability to dump the state of a Scwm process
that has all of the basic modules loaded. Although this
would increase the size of the executable, it also would
substantially reduce startup delays. Fortunately, after
startup, Scwm’s performance is indistinguishable from
other window managers that are written entirely in C.

8



Another rich area for future work involves our constraint
interface. Currently, we only support constraints among
windows. It seems useful to permit the addition of
“guide-line” and “guide-point” elements and allow win-
dows to be constrained relative to them. These could,
for example, be used to ensure that a window stays in
the current viewport, or stays in a specific region of
the display. It would also be intriguing to investigate
the possibility of ghost-frame objects that are controlled
exclusively by Scwm. These window frames could then
hold real application windows by dragging them into
the frame. This feature would permit hierarchically or-
ganizing windows, while still allowing full access to the
constraint solver for non-hierarchical relationships.

We are also considering extending our voice-based in-
terface to permit specifying constraints. In Scwm, a
user can center a window simply by saying aloud “Cen-
ter current window.” The voice recognition interface to
window layout and control encourages the user to ex-
press higher level intention: it is far more awkward to
say “move window to 379, 522” than it is to say “move
window next to Emacs.” In this way, the voice interface
usefully contrasts with direct manipulation where exact
coordinates naturally result from the interaction tech-
nique. Additionally, voice-based interactions may prove
especially valuable for disabled users for whom direct
manipulation is difficult.

Discerning a user’s true intention is an interesting com-
plexity of the declarative specification of our current
constraints interface. Consider a user who is manipu-
lating three windows, A, B, and C. Suppose the user
constrains A to be to the left of B, and B to the left
of C. Now suppose the application displaying in win-
dow B terminates, thus removing that window. Should
window A still be constrained to be to the left of win-
dow C? In other words, should the transitive constraint
that was implicit through window B be preserved? The
answer depends on the user’s underlying desire. Provid-
ing higher-level abstractions for commonly-desired sit-
uations may alleviate this ambiguity. For example, if
the user had pressed a button to keep three windows
horizontally non-overlapping in a row, it is clear that
window B’s disappearance should not remove the con-
straint that window A remain to the left of C.

Finally, we are especially interested in combining our
work on constraints and the web [2] with this work on
window layout. Web, window, and widget layout are
all fundamentally related, and their similarities should
ideally be factored out into a unifying framework so that
advances made in any area benefit all kinds of flexible,
dynamic two-dimensional layout.
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