A Constraint Interface for Managing Windows

Greg J. Badros Jeffrey W. Nichols Alan Borning
{gjb,jwnichls,borning}@cs.washington.edu
Dept. of Computer Science and Engineering
University of Washington, Box 352350
Seattle, WA 98195-2350 USA

ABSTRACT

Constraints are an important user interface technology.
We developed ScwM as a testbed for exploring Uls
for constraint-based layout. Its constraint interface in-
cludes a toolbar for adding relationships and an “inves-
tigator” for viewing and manipulating the constraints.
We performed a discount usability study with six users
and learned that our interface was sufficient for them
to complete the tasks, but also uncovered numerous us-
ability issues. We have improved our interface from that
feedback and suggest more studies testing our other in-
teraction paradigms including constraint inference and
voice-recognition.

Keywords
Window manager, constraints, layout, Scheme.

INTRODUCTION

Constraints are an important user interface technology.
They permit users to specify relationships that they de-
sire to hold among entities. Constraint-solving algo-
rithms then maintain these relationships automatically.
Techniques for interactively specifying and manipulat-
ing constraints are not well-established. We developed
ScwM—the Scheme Constraints Window Manager—as
a testbed for exploring Uls for constraint-based lay-
out [2]. The constraint features enable users to better
integrate related application windows. For example, a
user may desire an xterm and an emacs that are running
on the same machine to move around together, or for
a window displaying the current time to stay visible in
the bottom-right corner of the screen.

To maintain constraints among application windows,
ScwM embeds our Cassowary Constraint solving
toolkit (software and papers are available from www.
cs.washington.edu/research/constraints/cassowary).

SCwM is a practical system that leverages Scheme to
simplify prototyping advanced functionality and has
hundreds of users in the Unix X-Windows community.

CONSTRAINTS INTERFACE

Our user interface consists of two main parts: a tool-
bar for adding relationships (fig. 1) and an investigator
utility for examining the current constraints (fig. 2).

e
z [« »|FE 3 i L

Figure 1: The right half of the constraint toolbar.

Each toolbar button has an icon that represents a kind
of constraint and provides pop-up help to aid new users
in learning the represented relationship. To add a con-
straint, users click on a button and then select windows
to relate. Some constraints affect only a single window
(e.g., the rightmost button anchors a window) and oth-
ers relate two or more windows (e.g., the second button
from the right initiates horizontal-alignment).

For many of the constraints, further parameters of the
relationship are determined by where users click when
selecting a window—e.g., an anchor keeps a window’s
northwest corner in place if users click in the upper-
leftmost ninth of a window, but it instead keeps the
southeast corner fixed if they pick the bottom-rightmost
ninth. This behaviour is suggested by highlighting an
edge or corner of the window being selected.

| Constraint investigator | =1 =
Harizantal alignment: top<-=top r Delete
Harizontal alignment: hottom<-=bottam = Delete
Vertical alignment: right=-=left = Delete
Sum of Widths Constant: 2 windows r Delete
Disable &l Enable all Delete All

Figure 2: The constraint investigator window.

The constraint investigator window lists all constraints
added by the user. Each constraint may be en-
abled/disabled via a check box or deleted by clicking
a button. Parameters of each constraint are listed and
moving the pointer over the checkbox highlights the re-
lated windows and marks-up those actual windows with
a visual representation of that constraint. When con-
straints are re-enabled, the affected windows animate
to their new positions.

USABILITY STUDY
We applied a discount usability approach [4] to improve
our constraint interface to managing windows.

Methodology

Six advanced computer users thought aloud while per-
forming three tasks. Each task consists of two parts:
discovery and re-creation. First, users manipulate win-
dows with constraints already active to discover and
describe those relationships (without use of the con-
straint investigator). After giving a correct description,
they then use the interface on a second display to con-
strain a fresh set of windows identically. Users were
given only a very minimal description of the interface.

The three constraint configurations tested were: 1) a
Netscape Find dialog kept in the upper right corner of
the main browser window; 2) three windows kept right-
aligned along the edge of the screen such that none of
the windows overlap nor leaves the top or bottom of the
screen; and 3) two windows tiled horizontally.

Results

All users were able to complete their tasks. Discovering
the constraints was straightforward—manipulating the
windows and observing the behaviour was sufficient to
deduce the relationships already present. Re-creating
the configurations was more troublesome, but users still
succeeded. They often used the investigator to remove
incorrect constraints, but then continued onward with
an alternate hypothesis.

Problems discovered

Our study uncovered numerous usability issues. The
most substantial problem involved selecting window
parts for the alignment constraints. When performing a
vertical alignment, all that matters is whether the user
clicks on the left, center, or right third of the window—
it is irrelevant whether the click is in the top, middle,
or bottom of the window. Our interface, however, still
highlighted individual corners or edges as it does for
anchor constraints where any of the nine positions is
significant. Users were confused by the UI distinguish-
ing along the irrelevant vertical dimension. We revised
ScwM to highlight whole edges of windows when ap-
plying an alignment constraint.

When users began adding a constraint and wanted to
cancel, they were unsure of how to abort their action.
Some users clicked on the toolbar thinking that is a
special window. Others discovered that clicking on the
background results in an error that terminates the op-
eration. No user realized that a right-click aborts and
we now also support pressing the Escape key to cancel
a window selection.

Other observations

The users who performed best studied the tooltip help
for each of the toolbar buttons before attempting their
first re-creation sub-task. We were surprised at the

variety of constraints used in re-creating our configu-
rations: no user matched the expected solution on all
three tasks. In particular, the “strict relative position”
constraint was used especially advantageously by users
who chose to configure windows manually before apply-
ing constraints to keep the windows as they were.

Not all users discovered the constraint-visualization fea-
ture of the investigator. We now draw the visualizations
whenever the user points at any part of the description,
not just the enable checkbox. Also, one user wanted to
directly modify the parameters of a constraint in the
investigator window.

Users definitely enjoyed the constraint features. One
commented: “Wheee! They bumped into each other—
that was pretty cool!”

CONCLUSIONS AND FUTURE WORK

Our constraint interface was usable for realistic tasks.
Users can understand constrained layout on the basis of
the dynamic behaviour of windows and can use our tool-
bar and investigator to re-create the constraints anew
without any training in the use of the Ul

Managing windows provides a highly-dynamic environ-
ment to experiment with user understanding of con-
straints. Lessons learned from SCwM are applicable to
more static layout domains such as web page layout [1].

Although the interface to the constraints tested here
is fairly conventional, SCWM supports both constraint
inference [3] and voice recognition for establishing and
manipulating relationships on windows. We also pro-
vide a programming-by-demonstration facility to cre-
ate abstractions of compositions of constraints. These
interaction paradigms may lead to substantially better
user experiences. We will perform more usability stud-
ies to refine and improve those techniques and compare
them to this initial interface.

ACKNOWLEDGEMENTS

We thank all those who participated in our study. This
research is funded by NSF Grant No. IIS-9975990 and
the University of Washington CSE Wilma Bradley fel-
lowship for the first author.

REFERENCES

[1] G. J. Badros, A. Borning, K. Marriott, and P. Stuckey.
Constraint cascading style sheets for the web. In Pro-
ceedings of the 1999 ACM Conference on User Interface
Software and Technology, November 1999.

[2] G. J. Badros, J. Nichols, and A. Borning. SCwM—the
Scheme Constraints Window Manager. In Proceedings of
the AAAI Spring Symposium on Smart Graphics, March
2000. To appear.

[3] B. A. Myers and W. Buxton. Creating highly-interactive
and graphical user interfaces by demonstration. In Pro-
ceedings of SIGGRAPH 1986, Dallas, August 1986.

[4] J. Nielson. Usability Engineering. Morgan Kaufmann,
1994.

